Project

Back to overview

Re-equiping the noble gas laboratory to perform state of the art science, University of Geneva

Applicant Spikings Richard A.
Number 177026
Funding scheme R'EQUIP
Research institution Département des sciences de la Terre Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Geochronology
Start/End 01.03.2018 - 29.02.2020
Approved amount 756'720.00
Show all

All Disciplines (7)

Discipline
Geochronology
Mineralogy
Geomorphology
Geology
Other disciplines of Earth Sciences
Geochemistry
Palaeontology

Keywords (7)

Geochronology; Dating rock deformation; Thermochronology; Ar diffusion; Dating ore deposits; Calibrating Earthime; 40Ar/39Ar

Lay Summary (German)

Lead
Dieses Projekt ermöglicht es das Geo- und Thermochronologie Labor der Universität Genf zu erneuer. Die neuen Geräte werden es uns erlauben, wichtige und zeitgemässe wisschenschaftliche Fragen zu beantworten und international auf höchstem Niveau konkurenzfähig zu bleiben.
Lay summary

Es ist das Hauptziel dieses Projektes, das Edelgaslabor des Erdwissenschaftlichen Instituts der Universität Genf zu erneuern. Im Rahmen dieses Projektes werden unter anderem ein neues Massenspektrometer, sowie zwei Lasergeräte erworben. Die Laser werden dazu verwenden die Edelgase des zu analysierenden Probenmaterials freizusetzen, entweder mittels Erhitzen oder mittels Ablation. Die freigesetzten Edelgase können nachfolgend mit dem neu erworbenen Massenspektrometer in sehr hoher Präzision auf ihre Isotopenzusammensetzungen gemessen werden. Das Labor wird einer Vielzahl von Wissenschaftlern offenstehen, im speziellen der Gemeinschaft der Erd- und Umweltwissenschaften der Universitäten Genf und Lausanne (ELSTE). Fragestellungen welche genauer Untersucht werden sollen beinhalten unter anderem:

  1. Wann und wieso fanden Massenaussterben statt?
  2. Wie entstehen Erzlagerstätten und wie lange dauert es ein solches zu formen?
  3. Wie entstehen Gebirgszüge, und wie lange dauert es, bis sie wieder abgetragen sind?
  4. Wie entstehen Gesteinsschmelzen, wie lange überleben diese in der Kruste und wie steht dies im Zusammenhang mit der Frequenz von Vulkanausbrüchen?
  5. Wie alt sind Mondgesteine und Meteoriten?
  6. Wie stabil sind alte Kerne der Kontinentalen Kruste? Wie stark werden diese von distal erzeugtem Druck und Stress der Plattentektonik deformiert?
  7. Wie lange dauert es bis Sprödbrüche oder duktile Deformationen in der Erdkruste entstehen?

Die neu erworbenen Geräte werden es dem Wisschenschaftsstandort Schweiz ermöglichen, sich im europäischen Umfeld an der Spitze der Geo- und Thermochronologie zu etablieren und Messungen zu tätigen, welche mit den Massenspektrometern der älteren Generation nicht möglich waren.

Direct link to Lay Summary Last update: 21.11.2017

Responsible applicant and co-applicants

Publications

Publication
The Gondwanan margin in West Antarctica: Insights from Late Triassic magmatism of the Antarctic Peninsula
Bastias Joaquin, Spikings Richard, Ulianov Alex, Riley Teal, Burton-Johnson Alex, Chiaradia Massimo, Baumgartner Lukas, Hervé Francisco, Bouvier Anne-Sophie (2020), The Gondwanan margin in West Antarctica: Insights from Late Triassic magmatism of the Antarctic Peninsula, in Gondwana Research, 81, 1-20.
Diffusion vs. fluid alteration in alkali feldspar 40Ar/39Ar thermochronology: Does cross-correlation of log(r/r0) and age spectra validate thermal histories?
Popov Daniil V., Spikings Richard A. (2020), Diffusion vs. fluid alteration in alkali feldspar 40Ar/39Ar thermochronology: Does cross-correlation of log(r/r0) and age spectra validate thermal histories?, in Chemical Geology, 539, 119506-119506.
Geochronology of metamorphism, deformation and fluid circulation: a comparison between Rb-Sr and Ar-Ar phyllosilicate and U-Pb apatite systematics in the Karagwe-Ankole Belt (Central Africa)
Van Daele Johanna, Dewaele Stijn, Melcher Frank, Onuk Peter, Spikings Richard, Glorie Stijn, Jepson Gilby, Muchez Philippe (2020), Geochronology of metamorphism, deformation and fluid circulation: a comparison between Rb-Sr and Ar-Ar phyllosilicate and U-Pb apatite systematics in the Karagwe-Ankole Belt (Central Africa), in Gondwana Research, 1-18.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Goldschmidt Geochemistry Conference Poster Fluid-and deformation-induced Pan-African overprint in the Western Domain of the Karagwe-Ankole Belt (Central Africa) 20.09.2019 Barcelona, Spain Spikings Richard A.;
AAPG GTW: Exploration and Production in the Black Sea, Caucasus, and Caspian Region Individual talk New age, structural, and petrological data of metamorphic zones of the Tsaghkuniats Massif, Lesser Caucasus: reinterpretation of the signification of regional metamorphism 10.09.2019 Batumi, Georgia Spikings Richard A.;
Goldschmidt Geochemistry Conference Individual talk Diffusion and Fluid-Interaction in Itrongay Pegmatite (Madagascar): The Results of in situ Ar-Ar Dating of Gem-Quality Alkali Feldspar and U-Pb Dating of Apatite Inclusions within it 10.08.2019 Barcelona, Spain Spikings Richard A.;


Associated projects

Number Title Start Funding scheme
165752 Distal skarns as an ore-forming environment 01.07.2016 Project funding
153889 Exploration and characterization of deep underground reservoirs 01.10.2014 NRP 70 Energy Turnaround
166280 Tracing the invisible path of fluids in the crust with microscale oxygen isotope measurements in key metamorphic minerals 01.04.2016 Project funding
172702 The build-up to volcanic eruptions 01.04.2017 Project funding
182007 Temporal coupling of environmental change, volcanism and evolution in the geological past through high-precision geochronology 01.01.2019 Project funding
156421 Magmatic processes in the continental crust: from source variations to emplacement mechanisms 01.10.2014 Project funding
169901 Magmatic-hydrothermal transition in the world class Sn District of San Rafael, Peru: multi-isotopic characterization 01.03.2017 Project funding
149328 The Tso Morari nappe and its surrounding tectonic units (Indian Himalayas, Ladakh): constrains for modeling on ultrahigh-pressure metamorphic nappe formation and exhumation 01.04.2014 Project funding
160052 Advancing alkali feldspar and muscovite 40Ar/39Ar thermochronology 01.12.2015 Project funding
162341 Temporal calibration of eruption dynamics of Large Igneous Provinces and correlation to global environmental disturbance with high-precision U-Pb dating of micro-zircon and -baddeleyite 01.01.2016 Project funding
137663 Magmas, ore deposits and geodynamic evolution at a convergent margin: the case of Ecuador 01.01.2012 Project funding
162340 The role of sheet silicate-rich rocks during mountain building processes 01.01.2016 Project funding
169055 Structure and evolution of an antiformal nappe stack (Aar massif, Central Alps): Formation of mechanical anisotropies and their bearing on natural risks 01.10.2016 Project funding

Abstract

This project provides partial funds for a new noble gas mass spectrometer, which will primarily be used for the 40Ar/39Ar method, a new stainless steel ultra-high vacuum extraction line, a CO2-IR and a 193nm UV excimer laser for in-situ analyses. As described in section 2, the facility will be used by numerous research groups within Swiss and international institutions. These groups have a common demand to acquire bulk and in-situ, state-of-the-art argon isotope data to achieve their highly varied research aims. The 40Ar/39Ar laboratory at the Department of Earth Sciences, Geneva is the only such facility in Switzerland, and is equipped with an Argus V noble gas mass spectrometer (GV Instruments Ltd.) and an IR laser. The Argus V is thirteen years old and its capabilities are severely limited relative to new generation mass spectrometers, rendering it unable to achieve the highest levels of precision and accuracy, and thus address high-end scientific questions.The facility will allow users to acquire argon isotope data from a large variety of minerals that are found in a wide range of igneous and metamorphic rocks, as well as detrital minerals, hydrothermal deposits and diagenetic assemblages. The data can be used to estimate crystallisation/precipitation ages, magma and fluid sources, deformation ages, and controversially, thermal histories, rendering the facility useful to a wide variety of Earth Science disciplines. The 40Ar/39Ar technique is used in the following broad Earth Science fields (the following list is not exhaustive):-The quantification of exhumation, rock and surface uplift processes related to plate interaction. For example, the study of compressional orogenesis and extension (e.g. evolution of the Himalayas, Andes and the Rockies; Foster et al., 1990; Coleman and Hodges, 1998; Spikings et al., 2010).-Direct dating of rock deformation using in-situ methods (e.g. Markley et al., 1998; Mulch et al., 2002).-Geochronology of igneous rocks, the calibration of absolute time in the rock record (Earthtime) and temporal control of the faunal and floral record (e.g. Jourdan et al., 2008; Sageman et al., 2014; Singer, 2014).-Geochronology of ore and gangue mineralization, including dating fluid and solid inclusions (e.g. Phillips and Miller, 2006; Qiu and Jiang, 2007; Baumgartner et al., 2009).-Geochronology of weathering processes and landscape evolution (e.g. Vasconcelos and Conroy, 2003).-Analysis of the stability of continental interiors by constraining their cooling and exhumation histories (e.g. Foster and Ehlers, 1998; Martingnole and Reynolds, 1997; Spikings et al., 2001a,b).-Geochronology of extra-terrestrial rocks (e.g. lunar basalts; Dalrymple et al., 1996).The new-generation of noble gas mass spectrometers are equipped with ion source materials and collector electronics that are more stable and yield significantly better signal-to-noise ratios, giving 40Ar/39Ar dates with precisions better than ±0.1%. Accuracies are significantly improved with higher mass resolutions (=1500) than older gas-source mass spectrometers. These collectively provide reliable geochronology of very young rocks (<10 Ka), dating very small quantities of material (e.g. melt inclusions in olivines, single fluid inclusions in sulphides), high-spatial resolution in-situ diffusion experiments and in-situ geochronology (e.g. studies of Ar-redistribution, thermochronology and dating deformation), and the absolute calibration of Earthtime, among other novel applications.The new 40Ar/39Ar facility highly complements pre-existing apparatus within ELSTE (e.g. isotope dilution thermal ionization mass spectrometry, secondary ion mass spectrometry) and is the only laboratory that uses the 40Ar/39Ar method in Switzerland. Numerous international collaborations are also foundered on the use of the 40Ar/39Ar laboratory (E.g. Czech Republic, South Africa, France, Belgium, Chile). The requested equipment are required to significantly update the current facility to be able to address high-end scientific questions.
-