Project

Back to overview

Low-vibration UHV closed cycle cryostat for quantum optomechanics research

English title Low-vibration UHV closed cycle cryostat for quantum optomechanics research
Applicant Kippenberg Tobias Jan
Number 177016
Funding scheme R'EQUIP
Research institution Laboratoire de photonique et mesures quantiques EPFL - STI - IEL - LPQM2
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.06.2018 - 31.05.2019
Approved amount 114'000.00
Show all

Keywords (3)

Optomechanics; nanomechanics; quantum metrology

Lay Summary (French)

Lead
L’optomécanique (cavity optomechanics) est l’étude des interactions entre le déplacement d’un objet mécanique et la lumière. Pour des dispositifs à l’échelle nanométrique, cette interaction peut être très forte, et ouvrir de nouvelles possibilités, que ce soit pour des technologies ou pour l’étude des lois fondamentales de mécanique quantique. En particulier, les dispositifs optomécaniques peuvent être utilisés en tant que senseurs de force, de masse et d’accélération, avec une sensibilité limitée seulement par le principe d’incertitude de Heiseberg et l’incertitude quantique de mesure. L’exploration expérimentale de ces limites peut mener à une compréhension plus fine de ce qu’est une mesure quantique et également à des stratégies pratiques pour améliorer la sensibilité des senseurs au delà des limites quantiques conventionnelles.
Lay summary

Le but principal de notre projet est l’étude expérimentale des mesures optomécaniques ainsi que le contrôle par rétroaction d’oscillateurs mécaniques dans le régime quantique. Nous visons la préparation de l’état fondamental (l’état sans perturbations thermiques) d’un oscillateur mécanique et la démonstration de mesures de force avec une sensibilité améliorée par la mécanique quantique.

A présent, dans notre laboratoire, ainsi que dans une poignée d’autres laboratoires dans le monde, ont eu lieu les premiers pas vers des mesures quantique efficientes. Ceci inclut l’observations d’effets quantique clés, comme la rétroaction due aux fluctuations quantiques de la lumière et la génération d’états non-classiques de la lumière. Nous travaillons à présent à exploiter ces premiers effets quantiques.

Direct link to Lay Summary Last update: 23.03.2018

Responsible applicant and co-applicants

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
CLEO Europe 2019 Talk given at a conference Ultralow Dissipation Mechanical Resonators for Cavity Optomechanics 23.06.2019 Germany, Germany Kippenberg Tobias Jan;
NMC 2019 Poster Strained Silicon Nanomechanics 19.06.2019 Lausanne, Switzerland Kippenberg Tobias Jan;
CLEO 2019 Talk given at a conference Ultralow Dissipation Mechanical Resonators for Quantum Optomechanics 05.05.2019 San Jose, United States of America Kippenberg Tobias Jan;
WOMBAT 2019 Poster Strained Nanomechanical Oscillators with Low Dissipation 26.03.2019 Tel Aviv, Israel Kippenberg Tobias Jan;
SPIE Photonics West 2019 Talk given at a conference Elastic Strain Engineering for Ultralow Mechanical Dissipation 05.02.2019 San Francisco, United States of America Kippenberg Tobias Jan;
OMT-HOT 2019 Individual talk Strained Nanomechanical Oscillators with Low Dissipation 20.01.2019 Saanen, Switzerland Kippenberg Tobias Jan;
OMN 2018 Poster Elastic Strain Engineering for Ultralow Mechanical Dissipation 01.08.2018 Lausanne, Switzerland Kippenberg Tobias Jan;
ICAP 2018 Talk given at a conference Elastic Strain Engineering for Ultralow Mechanical Dissipation 22.07.2018 Barcelona, Spain Kippenberg Tobias Jan;
EMRS 2018 Talk given at a conference Elastic Strain Engineering for Ultralow Mechanical Dissipation 19.06.2018 San José, United States of America Kippenberg Tobias Jan;


Associated projects

Number Title Start Funding scheme
163387 Cavity Quantum Optomechanics with Nanomechanical Oscillators 01.12.2015 Project funding

Abstract

The field of cavity quantum optomechanics, has undergone remarkable development in recent years, enabling various fundamental science studies as well as proof-of-principle practical technologies. The central ideas of cavity optomechanics were theoretically proposed decades ago, but only within the last decade have optomechanical systems been developed that operate in a regime where the radiation pressure effects become important. The first demonstration of laser cooling of mechanical modes of microresonators by radiation pressure in 2006 was quickly and widely adopted, and provided a route to ground state cooling. Eventually, by making the quantum fluctuations of radiation pressure comparable to, or exceed the thermal fluctuations of the mechanical oscillator, quantum optomechanical experiments became possible, including the observation of radiation pressure shot noise, squeezed light generation, or quantum backaction cancellation via feedback cooling close to ground state, and the observation of quantum correlations due to radiation pressure. One of the directions in which contemporary quantum optomechanics provides outstanding experimental capabilities is quantum-enhanced position and force measurements. One of the major limiting factors in all optomechanical experiments is thermal noise of the mechanical element, which is reduced by operation in a cryogenic environment via high quality factor mechanical resonators. The most successful quantum optomechanical experiments so far have been using thin-film silicon nitride membranes that require operation in a high vacuum environment to avoid added dissipation due to gas damping.Within this R’Equip the PI and his research group wish to apply for a 4 Kelvin closed-cycle low-vibration ultrahigh vacuum cryostat to carry out research in quantum optomechanics, which directly builds on our previous accomplishments in this domain. Although the PI and his laboratory (Laboratory of Photonics and Quantum Measurements, LPQM) have extensive experience with cryogenic optomechanical experiments, those exclusively utilized He-3 and He-4 buffer gas cryostats, which do not offer the ultra-high vacuum required by newly developed optomechanical devices. Novel silicon nitride nanobeam oscillators, developed in the laboratory of the PI, have exceptionally high quality factors (>100 million at MHz frequencies), and as a consequence require an ultrahigh vacuum environment in order to not be limited by gas damping. Additionally, optomechanical experiments rely on positioning of microscale objects and thus are sensitive to vibrations, which should be suppressed below 1 nm peak-to-peak level. The low vibrations requirement for a closed cycle 4 Kelvin cryostat can be fulfilled by a device that is at the forefront of commercially available technology. The requested cryostat would enable research in a number of directions in the laboratory of the PI. Firstly, we seek to demonstrate quantum-enhanced force metrology using an optomechanical transducer, including variational measurements and quantum backaction evasion measurements. Within the same experiment we also seek to demonstrate measurement based feedback in a truly quantum regime, including feedback cooling of an oscillator to its ground state. Thirdly, we seek to explore optomechanics using recently developed mechanical oscillators with ultrahigh quality factors, which would be capable of 10^4 coherent oscillations within the decoherence time at cryogenic temperatures and in a UHV environment. The ability to work with a dry-cryostat at 4 K would be a critical requirement for these experiments, which are impossible using the presently available cryogenic technology of the laboratory.
-