Project

Back to overview

Ultra-bright electron sources for pulsed electron microscopy

English title Ultra-bright electron sources for pulsed electron microscopy
Applicant Fontcuberta i Morral Anna
Number 176680
Funding scheme Bridge - Discovery
Research institution Laboratoire des matériaux semiconducteurs EPFL - STI - IMX - LMSC
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.02.2018 - 31.07.2022
Approved amount 426'963.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Microelectronics. Optoelectronics

Keywords (4)

pulsed electron microscopy; cathodoluminescence; semiconductors; nanotechnology

Lay Summary (French)

Lead
Source d'électrons ultra-brillante pour la microscopie électronique pulsée
Lay summary

L’objectif de ce travail est d’obtenir les bases scientifiques et techniques pour la prochaine génération de sources d’électrons pulsées, qui devraient améliorer la technologie actuelle de plusieurs ordres de grandeur. Le succès dans ce projet permettra des grands changements dans la technique de microscopie électronique car cela permettra l’implantation de mesures en mode dynamique dans les microscopes électroniques. Ce type de mesures permettra d’étudier la réponse des matériaux résolue dans le temps mais aussi de réduire de façon significative l’exposition à une haute dose d’électrons. La technique pourra être implantée dans des chaines de production des dispositifs électroniques et optoélectroniques car elle permettra une détection rapide des défauts.

La nouvelle génération de cathodes sera basée sur la technologie GaN. Nous allons étudier la meilleure configuration des matériaux, l’optimisation de la forme de la source ainsi que sa durabilité. Nous espérons avoir un prototype de source brillante d’électrons à la fin du projet.

Direct link to Lay Summary Last update: 05.12.2017

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Boron quantification, concentration mapping and picosecond excitons dynamics in High-Pressure-High-Temperature diamond by cathodoluminescence
Tappy Nicolas, Gallo Pascal, Fontcuberta i Morral Anna, Monachon Christian (2022), Boron quantification, concentration mapping and picosecond excitons dynamics in High-Pressure-High-Temperature diamond by cathodoluminescence, in Carbon, 191, 48-54.
Image shift correction, noise analysis, and model fitting of (cathodo-)luminescence hyperspectral maps
Tappy Nicolas, Fontcuberta i Morral Anna, Monachon Christian (2022), Image shift correction, noise analysis, and model fitting of (cathodo-)luminescence hyperspectral maps, in Review of Scientific Instruments, 93(5), 053702-053702.
Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices
Güniat Lucas, Tappy Nicolas, Balgarkashi Akshay, Charvin Titouan, Lemerle Raphaël, Morgan Nicholas, Dede Didem, Kim Wonjong, Piazza Valerio, Leran Jean-Baptiste, Tizei Luiz H. G., Kociak Mathieu, Fontcuberta i Morral Anna (2022), Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices, in ACS Applied Nano Materials, 5(4), 5508-5515.
Porous Nitride Light-Emitting Diodes
Amador-Mendez Nuño, Mathieu-Pennober Tiphaine, Vézian Stéphane, Chauvat Marie-Pierre, Morales Magali, Ruterana Pierre, Babichev Andrey, Bayle Fabien, Julien François H., Bouchoule Sophie, Collin Stéphane, Gil Bernard, Tappy Nicolas, Fontcuberta i Morral Anna, Damilano Benjamin, Tchernycheva Maria (2022), Porous Nitride Light-Emitting Diodes, in ACS Photonics, 9(4), 1256-1263.
Cubic, hexagonal and tetragonal FeGe x phases ( x = 1, 1.5, 2): Raman spectroscopy and magnetic properties
Kúkoľová A., Dimitrievska M., Litvinchuk A. P., Ramanandan S. P., Tappy N., Menon H., Borg M., Grundler D., Fontcuberta i Morral A. (2021), Cubic, hexagonal and tetragonal FeGe x phases ( x = 1, 1.5, 2): Raman spectroscopy and magnetic properties, in CrystEngComm, 23(37), 6506-6517.
Optical properties and carrier dynamics in Co-doped ZnO nanorods
K. Sivan Aswathi, Galán-González Alejandro, Di Mario Lorenzo, Tappy Nicolas, Hernández-Ferrer Javier, Catone Daniele, Turchini Stefano, Benito Ana M., Maser Wolfgang K., Steinvall Simon Escobar, Fontcuberta i Morral Anna, Gallant Andrew, Zeze Dagou A., Atkinson Del, Martelli Faustino (2021), Optical properties and carrier dynamics in Co-doped ZnO nanorods, in Nanoscale Advances, 3(1), 214-222.
Heterotwin Zn 3 P 2 superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties
Escobar Steinvall Simon, Ghisalberti Lea, Zamani Reza R., Tappy Nicolas, Hage Fredrik S., Stutz Elias Z., Zamani Mahdi, Paul Rajrupa, Leran Jean-Baptiste, Ramasse Quentin M., Craig Carter W., Fontcuberta i Morral Anna (2020), Heterotwin Zn 3 P 2 superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties, in Nanoscale, 12(44), 22534-22540.
3D Ordering at the Liquid–Solid Polar Interface of Nanowires
Zamani Mahdi, Imbalzano Giulio, Tappy Nicolas, Alexander Duncan T. L., Martí‐Sánchez Sara, Ghisalberti Lea, Ramasse Quentin M., Friedl Martin, Tütüncüoglu Gözde, Francaviglia Luca, Bienvenue Sebastien, Hébert Cécile, Arbiol Jordi, Ceriotti Michele, Fontcuberta i Morral Anna (2020), 3D Ordering at the Liquid–Solid Polar Interface of Nanowires, in Advanced Materials, 32(38), 2001030-2001030.
Multiple morphologies and functionality of nanowires made from earth-abundant zinc phosphide
Escobar Steinvall Simon, Tappy Nicolas, Ghasemi Masoomeh, Zamani Reza R., LaGrange Thomas, Stutz Elias Z., Leran Jean-Baptiste, Zamani Mahdi, Paul Rajrupa, Fontcuberta i Morral Anna (2020), Multiple morphologies and functionality of nanowires made from earth-abundant zinc phosphide, in Nanoscale Horizons, -.

Collaboration

Group / person Country
Types of collaboration
Lake Diamond Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Nicolas Grandjean, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Attolight Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Nanowire week Talk given at a conference SEM and TEM-based Cathodoluminescence of Nanospades Heterostructures 25.04.2022 Chamonix, France Fontcuberta i Morral Anna; Tappy Nicolas;
EBSN2019: Electron Beam Spectroscopy for Nanophotonics 2019 Poster - 16.09.2019 Orsay, France Tappy Nicolas;
1D2D NANOMAT International Summer School Poster Nanostructures for next generation energy harvesting 02.07.2019 Bastia, France Tappy Nicolas; Fontcuberta i Morral Anna;


Abstract

The main objective of this project is to provide the scientific and technical basis for next generation pulsed electron sources that outperform current technology by several orders of magnitude. Success in this technology will enable the improvement of current electron-excitation microscopy and support the downsizing evolution of the semiconductor industry by enabling a new set of dynamic measurements in production sites, which are currently impossible as it evolves towards sub-20 nm nodes. It will also directly allow progress towards more efficient light emitting diodes and solar cells by enabling direct detection of defects.We are proposing a disruptive technology for pulsed electron emission, based on the photo-excitation of GaN nanostructures. Novel technical capabilities to manufacture and nanostructure GaN have arisen and consolidated over the last decade, making this project possible today. The proposed structures should provide cathodes with quantum efficiencies in the range of 2.5 to10%. Achieving these values would represent an improvement between 250 and 1000 times with respect to current tip pulsing technologies.The next generation of pulsed cathodes will be first optimized by modelling the band structure and field-effect enhancement through tip shape engineering. The cathodes will then be fabricated by top-down fabrication methods and tested in a specially designed chamber. The efficiency and durability of the cathodes will be characterized to further improve the design. Answering the following fundamental questions is paramount to the development of these cathodes:•What GaN-based heterostructure design minimizes the electron work function at the surface of the tip?•What type(s) of defect(s) are produced during the tip structuration process? Do they affect the functionality and/or durability of the cathode?•What is the emission process and does it have an activation period limiting the time resolution?•When these cathodes are integrated into an electron microscope, how does its resolution vary when the number of electrons per pulse is increased? In particular, is there a threshold after which space-charge effects make it worse?•Are the GaN-based cathodes compatible with a constant-wave laser to perform conventional electron microscopy measurements?•How does these cathodes cleanliness affect the obtained band structure, and therefore their ability to emit electrons?• What is the durability of these GaN-based cathodes in terms of stability - in other words what at their degradation mechanisms? Are there procedures to mitigate these mechanisms and improve their lifetime?
-