Project

Back to overview

Chest imaging under high frequency percussive ventilation

English title Chest imaging under high frequency percussive ventilation
Applicant Beigelman-Aubry Catherine
Number 176241
Funding scheme Project funding (Div. I-III)
Research institution Service de Radiodiagnostic et de Radiologie Interventionnelle CHUV
Institution of higher education University of Lausanne - LA
Main discipline Biomedical Engineering
Start/End 01.02.2018 - 31.05.2021
Approved amount 308'907.00
Show all

Keywords (8)

MRI; MR DIffusion; Non-Invasive Ventilation; PET/CT; High-Frequency Ventilation; Lung Nodule; Lung Cancer; F-18-FDG

Lay Summary (French)

Lead
Ce projet vise à étudier l’apport d’une nouvelle technique de stabilisation des mouvements respiratoires en imagerie thoracique. L’influence sur la qualité d’image sera analysée ainsi que son impact pour la prise en charge de pathologies, en particulier le nodule pulmonaire. Des corrélations avec des données issues de différentes modalités seront effectuées.
Lay summary
L’imagerie de la plupart des pathologies thoraciques repose sur les examens scannographiques (CT). C’est en particulier le cas pour la détection, le suivi et la caractérisation de nodules pulmonaires, une tomographie par émission de positons (PET) étant indiquée en complément dans certaines situations. L’imagerie par résonance magnétique (IRM) représente néanmoins une alternative non irradiante grâce en particulier au développement de séquences dédiées à l’étude du parenchyme pulmonaire. L’une des limitations majeures reste cependant le contrôle des artefacts respiratoires.

Nous avons récemment développé une technique permettant de réaliser un examen IRM ou PET en fin d’inspiration lors d’une « apnée » assistée par un appareil de ventilation à haute fréquence. Des périodes de stabilisation respiratoire continue de plusieurs minutes en fin d’inspiration sont ainsi atteignables, et permettent des acquisitions prolongées en IRM améliorant ainsi la qualité des images.

Le présent projet vise à déterminer l’impact de cette amélioration pour la prise en charge notamment des patients avec nodule pulmonaire. Les performances de l’IRM seront comparées avec celles de la méthode de référence actuelle (CT scan et PET lorsque requis) et les données histologiques si disponibles. La possibilité de combiner de façon fiable des données acquises avec l’aide de la ventilation à haute fréquence en IRM et en PET sera également étudiée.
Direct link to Lay Summary Last update: 30.10.2017

Responsible applicant and co-applicants

Employees

Project partner

Publications

Publication
Lung MRI assessment with high-frequency noninvasive ventilation at 3 T
Darçot Emeline, Delacoste Jean, Dunet Vincent, Dournes Gael, Rotzinger David, Bernasconi Maurizio, Vremaroiu Petrut, Simons Julien, Long Olivier, Rohner Chantal, Ledoux Jean-Baptiste, Stuber Matthias, Lovis Alban, Beigelman-Aubry Catherine (2020), Lung MRI assessment with high-frequency noninvasive ventilation at 3 T, in Magnetic Resonance Imaging, 74, 64-73.
MR Volumetry of Lung Nodules: A Pilot Study
Delacoste Jean, Dunet Vincent, Dournes Gael, Lovis Alban, Rohner Chantal, Elandoy Christel, Simons Julien, Long Olivier, Piccini Davide, Stuber Matthias, Prior John O., Nicod Laurent, Beigelman-Aubry Catherine (2019), MR Volumetry of Lung Nodules: A Pilot Study, in Frontiers in Medicine, 6, 1-6.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EANM'20 - Annual Congress of the European Association of Nuclear Medicine Poster Evaluation of Different Registration Landmarks for Thoracic MR‐PET/CT Fusion Using High-Frequency Non-Invasive Ventilation (HF-NIV) for Lung Nodule Assessment” 17.10.2020 Vienna, Austria Beigelman-Aubry Catherine; Prior John; Darçot Emeline;
European Congress of Radiology Poster Evaluation of Lung MR sequences with High Frequency Non-Invasive Ventilation at 3T, EPOS poster (abstract #4445 11.03.2020 Vienna, Austria Beigelman-Aubry Catherine; Darçot Emeline; Lovis Alban; Delacoste Jean;
Radiology Research Interdisciplinary Meeting (FRRIM) Individual talk Evaluation of Lung MR sequences with High Frequency Non-Invasive Ventilation at 3T. 08.11.2019 Lausanne, Switzerland Darçot Emeline; Stuber Matthias; Delacoste Jean; Lovis Alban; Beigelman-Aubry Catherine;
CIBM 15th Anniversary Forum Rollex Learning Center EPFL Poster Evaluation of Lung MR sequences with High Frequency Non-invasive Ventilation (HF-NIV) at 3T. 30.10.2019 Lausanne, Switzerland Delacoste Jean; Lovis Alban; Beigelman-Aubry Catherine; Stuber Matthias; Darçot Emeline;
7th annual CIBM-CHUV-MR. Retreat Talk given at a conference Take My Breath Away 04.09.2019 Sévrier, France Delacoste Jean; Stuber Matthias; Lovis Alban; Beigelman-Aubry Catherine; Darçot Emeline;


Communication with the public

Communication Title Media Place Year

Associated projects

Number Title Start Funding scheme
189969 PETITION - PET for InTensive Care units and Innovative protON therapy 01.09.2020 Sinergia

Abstract

Although computed tomography (CT) is the modality of choice for chest imaging, the potential danger of radiation exposure remains a problematical health problem, despite current significant improvements on dose reduction. In this setting, the capabilities of Magnetic Resonance Imaging (MRI) are tempting. However, MRI of the chest has since ever suffered from its sensitivity to respiratory and cardiac motion, this along with an intrinsically low signal-to-noise ratio of the lungs and a limited spatial resolution. To control motion respiration, existing solutions such as repeated apnoeas and motion compensation techniques allowing free-breathing acquisition have intrinsic limitations. The suppression of respiratory artefacts should benefit to all MR sequences. Moreover, while free-breathing MR acquisitions are usually gated or triggered at end of normal expiration, a technique allowing an acquisition at end inspiration would be well suited for lung analysis. Indeed, at expiration or with free-breathing, there is a potential underdiagnosis of lesions such as nodules and interstitial lung disease in some locations. In this setting, the CHUV has developed a new system able to almost suppress respiratory motion in spontaneously breathing patients, while preserving efficient oxygen and carbon dioxide exchanges. This was firstly applied to radiotherapy and PET-CT. Preliminary tests performed with high-frequency non-invasive ventilation (HF-NIV) in MRI (HF-NIV-MR) enabled a prolonged apnoea duration with an acquisition performed at end inspiration with promising results. Whereas the system of ventilation has been further improved, the aim of the planned study is to evaluate its additional value in the field of lung nodule. The results of HFNIV-MR will be compared to those obtained by using repeated apnoea or free-breathing with motion compensation techniques, and with low dose CT in pathologic conditions, for an accurate evaluation of the benefits and the potential limits of the technique. A main hypothesis is that HF-NIV-MR will allow an improvement of the overall image quality (IQ) compared to conventional apnoea methods. In particular, an improvement in the detection of pulmonary nodules is expected with recent ultra-short echo time (UTE) sequences with an increased diagnostic confidence. In addition to morphologic evaluation, a quantitative assessment of pulmonary nodules will also be performed by comparing the volumetry between HF-NIV-MR and CT, taking into account its value for evaluating lung cancer probability. A preliminary evaluation will be performed on MR phantoms simulating solid nodules of various volumes. Moreover, an additional hypothesis is that virtual PET-MR could be performed due to the almost identical and reproducible lung volumes obtained by both techniques when using the device, even if they are acquired separately. Indeed, this should allow a fusion of similar or even better quality than the current dedicated hybrid PET/-MR systems, at a significant lower cost, and accessible to any hospital/centre having both PET/CT and MR modalities. The optimized value of FDG-uptake will be correlated to the results of MR diffusion sequences in indeterminate pulmonary nodules and to histological data when available, with potentially better lesion characterization. Evaluation of numerous categories of chest disorders, such as pulmonary nodules, interstitial lung disease or pulmonary infections could benefit of this technique. One of most promising application would be the management of pulmonary nodules in the setting of screening of broncho-pulmonary carcinoma.
-