Project

Back to overview

Catalytic Polymeric Membranes for the Simultaneous Capture and Conversion of CO2 from Various Emission Sources

English title Catalytic Polymeric Membranes for the Simultaneous Capture and Conversion of CO2 from Various Emission Sources
Applicant Coskun Ali
Number 175947
Funding scheme Project funding (Div. I-III)
Research institution Département de Chimie Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Material Sciences
Start/End 01.12.2017 - 28.02.2022
Approved amount 650'000.00
Show all

All Disciplines (4)

Discipline
Material Sciences
Organic Chemistry
Physical Chemistry
Inorganic Chemistry

Keywords (5)

CO2 capture and conversion; polymeric membranes; porous organic polymers; Metal organic frameworks; heterogeneous catalysis

Lay Summary (German)

Lead
Increasing carbon dioxide emissions into the atmosphere is a significant problem in Switzerland. This project aims to develop polymeric catalytic membranes capable of capturing carbon dioxide directly from air and subsequently converting it into value-added products.
Lay summary

Die moderne Zivilisation ist immer noch stark auf fossile Brennstoffe angewiesen, um Energie und Materialien bereitzustellen. Allerdings wird unsere heutige petrochemische Industrie, die komplett auf Kohlenwasserstoffe angewiesen ist, nicht lange fortbestehen können, ohne effektive und wirtschaftliche Wege zur Bewältigung der Umweltprobleme zu finden, die aus der Nutzung fossiler Brennstoffe entstehen, insbesondere die enormen Kohlendioxidemissionen (CO2) in die Atmosphäre.

Daher ist die Entwicklung kommerziell realisierbarer CO2-zu-Brennstoff-Umwandlungsprozesse äußerst wichtig. Hierzu ist es notwendig, Prozesse zu finden, die gleichzeitig CO2 aus der Atmosphäre aufnehmen und in neue Materialien umwandeln können, um CO2 als nachhaltigen C1-Baustein nutzen zu können.

Unser Ziel ist es, robuste katalytische Polymermembranen zu entwickeln, die CO2 aus der Atmosphäre abtrennen und zu wertvollen, transportablen Brennstoffen wie Methanol umwandeln können. Dieses Forschungsvorhaben trägt zum besseren Verständnis der CO2-Abtrennung sowie der CO2-Umwandlungschemie durch Membranen bei, die für eine nachhaltige und wirtschaftliche Nutzung von Ressourcen erforderlich sind. Die erfolgreiche Umsetzung dieses Projekts wird nicht nur einen wirtschaftlichen Wert für das aufgenommene CO2 schaffen, wodurch die Gesamtkosten des Abscheidungsprozesses gesenkt werden, sondern es wird auch dazu beitragen, die ständig steigenden CO2-Emissionen in die Atmosphäre einzudämmen. Es wird erwartet, dass das vorgeschlagene Projekt auch eine breitere Wirkung auf verschiedene andere chemische Reaktionen haben wird, bei denen Trennungs- und Umwandlungsprozesse gleichzeitig erreicht werden können um hierdurch die Gesamtkosten zu senken und die Effizienz zu erhöhen.

Direct link to Lay Summary Last update: 30.11.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Salt-Templated Solvothermal Synthesis of Dioxane-Linked Three-Dimensional Nanoporous Organic Polymers for Carbon Dioxide and Iodine Capture
Ashirov Timur, Song Kyung Seob, Coskun Ali (2022), Salt-Templated Solvothermal Synthesis of Dioxane-Linked Three-Dimensional Nanoporous Organic Polymers for Carbon Dioxide and Iodine Capture, in ACS Applied Nano Materials, 10.1021/ac.
Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness
Ashirov Timur, Yazaydin A. Ozgur, Coskun Ali (2022), Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness, in Advanced Materials, 2106785-2106785.
Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities
Ashirov Timur, Coskun Ali (2021), Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities, in Chem, 7(9), 2385-2394.
The Green Lean Amine Machine: Harvesting Electric Power While Capturing Carbon Dioxide from Breath
Kalkus Trevor J., Guha Anirvan, Scholten Philip B.V., Nagornii Dmitrii, Coskun Ali, Ianiro Alessandro, Mayer Michael (2021), The Green Lean Amine Machine: Harvesting Electric Power While Capturing Carbon Dioxide from Breath, in Advanced Science, 8(15), 2100995-2100995.
Cyclotetrabenzil-Based Porous Organic Polymers with High Carbon Dioxide Affinity
Ashirov Timur, Alrayyani Maymounah, Song Kyung Seob, Miljanic Ognjen, Coskun Ali (2021), Cyclotetrabenzil-Based Porous Organic Polymers with High Carbon Dioxide Affinity, in Organic Materials, 346.
Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO2 Uptake Capacity
Song Kyung Seob, Talapaneni Siddulu Naidu, Ashirov Timur, Coskun Ali (2021), Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO2 Uptake Capacity, in ACS Applied Materials and Interfaces, 13(22), 26102-26108.
Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence
Huang Hsin-Hua, Song Kyung Seob, Prescimone Alessandro, Aster Alexander, Cohen Gabriel, Mannancherry Rajesh, Vauthey Eric, Coskun Ali, Šolomek Tomáš (2021), Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence, in Chemical Science, 5275.
The Prospect of Dimensionality in Porous Semiconductors
Fritz Patrick W., Coskun Ali (2021), The Prospect of Dimensionality in Porous Semiconductors, in Chemistry A European Journal, 7489.
Tailor-made Functional Polymers for Energy Storage and Environmental Applications
Coskun Ali (2020), Tailor-made Functional Polymers for Energy Storage and Environmental Applications, in CHIMIA, 74(9), 667-667.
A Three‐Dimensional Porous Organic Semiconductor Based on Fully sp 2 ‐Hybridized Graphitic Polymer
Byun Yearin, Xie Lilia S., Fritz Patrick, Ashirov Timur, Dinca Mircea, Coskun Ali (2020), A Three‐Dimensional Porous Organic Semiconductor Based on Fully sp 2 ‐Hybridized Graphitic Polymer, in Angewandte Chemie International Edition, 59(35), 15166-15170.
Hierarchically Porous Reduced Graphene Oxide Coated with Metal–Organic Framework HKUST-1 for Enhanced Hydrogen Gas Affinity
Song Kyung Seob, Kim Daeok, Coskun Ali (2020), Hierarchically Porous Reduced Graphene Oxide Coated with Metal–Organic Framework HKUST-1 for Enhanced Hydrogen Gas Affinity, in ACS Applied Nano Materials, 3(2), 985-991.
Nitrogen‐Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Long‐Lived Metal‐Free Catalysts for Acetylene Hydrochlorination
Kaiser Selina K., Song Kyung Seob, Mitchell Sharon, Coskun Ali, Pérez-Ramírez Javier (2020), Nitrogen‐Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Long‐Lived Metal‐Free Catalysts for Acetylene Hydrochlorination, in ChemCatChem, 1922.
Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H2 storage
Kim Daeok, Song Kyung Seob, Buyukcakir Onur, Yildirim Taner, Coskun Ali (2018), Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H2 storage, in Chemical Communications, 54, 12218.

Datasets

Nitrogen‐Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Long‐Lived Metal‐Free Catalysts for Acetylene Hydrochlorination

Author Kaiser, Selina; Song, Kyung Seob; Mitchell, Sharon; Coskun, Ali; Pérez‐Ramírez, Javier
Publication date 17.12.2019
Persistent Identifier (PID) 10.5281/zenodo.3625195
Repository Zenodo


Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities

Author Ashirov, Timur; Coskun, Ali
Publication date 29.06.2021
Persistent Identifier (PID) 10.5281/zenodo.5236770
Repository ZENODO


Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness

Author Ashirov, Timur; Yazaydin, A. Ozgur; Coskun, Ali
Publication date 09.11.2021
Persistent Identifier (PID) 10.5281/zenodo.5660751
Repository ZENODO


Salt-Templated Solvothermal Synthesis of Dioxane-Linked Three-Dimensional Nanoporous Organic Polymers for Carbon Dioxide and Iodine Capture

Author Ashirov, Timur; Song, Kyung Seob; Coskun, Ali
Publication date 16.03.2022
Persistent Identifier (PID) 10.5281/zenodo.6421154
Repository ZENODO


Cyclotetrabenzil-Based Porous Organic Polymers with High Carbon Dioxide Affinity

Author Ashirov, Timur; Alrayyani, Maymounah; Song, Kyung Seob; Miljanić, Ognjen Š; Coskun, Ali
Publication date 23.08.2021
Persistent Identifier (PID) 10.5281/zenodo.5236792
Repository Zenodo


Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO2 Uptake Capacity

Author Song, Kyung Seob; Talapaneni, Siddulu Naidu; Ashirov, Timur; Coskun, Ali
Publication date 26.05.2021
Persistent Identifier (PID) 10.5281/zenodo.5089946
Repository Zenodo


Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence

Author Huang, Hsin-Hua; Song, Kyung Seob; Prescimone, Alessandro; Aster, Alexander; Cohen, Gabriel; Mannancherry, Rajesh; Vauthey, Eric; Coskun, Ali; Solomek, Tomas
Publication date 09.03.2021
Persistent Identifier (PID) 10.5281/zenodo.5089934
Repository Zenodo


A Three‐Dimensional Porous Organic Semiconductor Based on Fully sp2‐Hybridized Graphitic Polymer

Author Byun, Yearin; Xie, Lilia S.; Fritz, Patrick W.; Dincă, Mircea; Coskun, Ali
Publication date 12.05.2020
Persistent Identifier (PID) 4005764
Repository Zenodo


Hierarchically Porous Reduced Graphene Oxide Coated with Metal-Organic Framework HKUST-1 for Enhanced Hydrogen Gas Affinity

Author Song, Kyung Seob; Kim, Daeok; Coskun, Ali
Publication date 15.12.2019
Persistent Identifier (PID) 3576590
Repository Zenodo


Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H2 storage

Author Kim, Daeok; Song, Kyung Seob; Buyukcakir, Onur; Yildirim, Taner; Coskun, Ali
Publication date 26.09.2018
Persistent Identifier (PID) 10.5281/zenodo.6420701
Repository Zenodo


Collaboration

Group / person Country
Types of collaboration
Michael Mayer / Adolphe Merkle Institute, University of Fribourg Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Ognjen Miljanic / University of Houston United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Mircea Dinca / MIT United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Javier Perez / ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Tomas Solomek / University of Bern Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Taner Yildirim / NIST United States of America (North America)
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
KAUST Chemical Science Seminar Individual talk Tailor-made Porous Materials for Energy and Environmental Applications 20.02.2022 Thuwal (Zoom presentation), Saudi Arabia Ashirov Timur; Coskun Ali;
Framework Materials for Functional pi-Systems Talk given at a conference Conjugated Porous Organic Polymers for Energy and Environmental Applications 26.10.2021 University of Zurich, Switzerland Coskun Ali;
Virginia Commonwealth University - Department of Chemistry Individual talk Tailoring Porous Organic Polymers for Energy and Environmental Applications 25.02.2021 Virginia, United States of America Coskun Ali;
University of Milano Bicocca Individual talk Tailoring Porous Organic Polymers for Energy and Environmental Applications 21.02.2020 Milano, Italy Coskun Ali;
Beilstein Nanotechnology Symposium 2019 - NEW DIRECTIONS FOR NANOPOROUS MATERIALS Talk given at a conference Porous Organic Polymers for Energy and Environmental Applications 12.11.2019 Rüdesheim, Germany Coskun Ali;
POPs2019 - International Symposium on Porous Organic Polymers Talk given at a conference Tailoring Porous Organic Polymers for Energy and Environmental Applications 09.09.2019 Heidelberg, Germany Ashirov Timur; Coskun Ali;
10th Singapore International Chemistry Conference Talk given at a conference Tailoring Supramolecular Polymers for Energy and Environmental Applications 16.12.2018 Singapore, Singapore Coskun Ali;
Mc2 -Materials, Characterization, and Catalysis Workshop Talk given at a conference Tailoring Porous Organic Polymers Towards Reducing CO2 Emissions 15.01.2018 ETH Zurich, Switzerland Coskun Ali;


Communication with the public

Communication Title Media Place Year
Print (books, brochures, leaflets) Department Activity Report International German-speaking Switzerland Western Switzerland 2022
Other activities Group Website - Research Highlights German-speaking Switzerland Western Switzerland International 2018

Associated projects

Number Title Start Funding scheme
183293 Single Crystal Diffraction: Dual System 01.09.2019 R'EQUIP
198110 600 MHz Nuclear Magnetic Resonance Spectrometer 01.03.2021 R'EQUIP

Abstract

Carbon dioxide emissions into the atmosphere accounts for the majority of environmental challenges and its global impact in the form of climate change, ocean acidification is well-documented. In this direction, absorption with amine solutions, adsorption with porous solids and cryogenic separation methods have been investigated conventionally, however, they possess major drawbacks such as high-energy penalty, environmental issues and complex operation procedures. Because of their fundamental engineering and economic advantages over competing separation technologies, membrane operations are now being explored for CO2 capture from power plants. However, the low CO2 selectivity of membrane systems is a major challenge yet to be tackled. Metal-organic frameworks (MOFs) and porous organic polymers (POPs) are emerging solid-sorbents for CO2 capture and their pore characteristics can be easily tailored by the combinational choice of building blocks. Accordingly, the incorporation of MOFs and POPs as fillers into the polymeric membranes could lead to the development of highly selective membrane systems with high gas selectivity over Knudsen diffusion. One of the great challenges for these membrane systems is, however, to realize simultaneous capture and conversion to not only use CO2 as a sustainable C1 building block, but also create an incentive for the further development of costly capture technologies. The research on these so-called “membrane reactors”, however, have been mostly limited to inorganic membranes, which are rather costly. Our main motivation in this proposal is to develop new catalytically active metal impregnated MOFs, MOF-derived core-shell porous carbons and metal impregnated POPs for the conversion of CO2 into value added products such as methanol from various emission sources at relatively low CO2 partial pressures and temperatures, which is highly important in the context of steam economy. The benchmark catalyst for the direct hydrogenation of CO2 is the Cu/ZnO/Al2O3 system. This catalyst operates at high pressures and temperatures through a widely accepted bifunctional mechanism, that is the hydrogen spillover on Cu nanoparticles and CO2 activation on ZnO to form CH3OH. However, the sintering of Cu nanoparticles and high pressures of CO2 and H2 were found to rapidly decrease the activity of the catalyst. We propose that highly CO2-philic porous materials in the form of MOFs and POPs can pre-concentrate CO2 even at very low pressures. The functionalization of pores with carbenes and amines, which can act as anchors for the chemical activation of the CO2 along with the presence of metal nanoparticles (MNPs) such as Cu, Pd for hydrogen spillover could transform these porous sorbents into efficient heterogeneous catalysts for the conversion of CO2 into MeOH. Importantly, by tuning (1) textural properties, (2) CO2-philicity and (3) catalyst loading of these porous sorbents, we will be able to obtain valuable fundamental insights for the conversion mechanism. Subsequent incorporation of these heterogeneous catalysts as fillers into the polymeric membranes will enable the realization of catalytic composite membranes for the continuous capture and conversion of CO2 at low temperature and pressures. More significantly, the ability of membranes to remove products from equilibrium reactions will further contribute the catalytic performance of these systems. Successful realization of this project will not only create economical value to the captured CO2, thus decreasing the cost of capture process, but it will also help to curb ever-increasing CO2 emissions.
-