2-D Materials; Simulation; Transport; Ab-initio; Electro-thermal
FioreSara, KlinkertCedric, DucryFabian, BackmanJonathan, LuisierMathieu (2022), Influence of the hBN dielectric layers on the quantum transport properties of MoS2 transistors, in
Materials, 15, 1062.
Luisier Mathieu, Szabo Aron, Klinkert Cedric, Stieger Christian, Rau Martin, Agarwal Tarun, Lee Youseung (2021), Carrier Transport in 2-D Materials: an Ab Initio Study, in
nanoGe Fall Meeting 2019, Berlin, GermanynanoGe, Germany.
LuisierMathieu, FioreSara, BunjakuTeutë, BackmanJonathan, KlinkertCedric, SzaboAron (2021), Ab initio modeling of thermal effects in 2D van der Waals materials, in
2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Optical Society of America, USA.
Klinkert Cedric, Fiore Sara, Backman Jonathan, Lee Youseung, Luisier Mathieu (2021), Impact of Orientation Misalignments on Black Phosphorus Ultrascaled Field-Effect Transistors, in
IEEE Electron Device Letters, 42(3), 434-437.
Oliva Nicolò, Backman Jonathan, Capua Luca, Cavalieri Matteo, Luisier Mathieu, Ionescu Adrian M. (2020), WSe2/SnSe2 vdW heterojunction Tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake, in
npj 2D Materials and Applications, 4(1), 5-5.
Lee Y., Agarwal T., Luisier M. (2020), Ab initio modeling framework for Majorana transport in 2D materials: towards topological quantum computing, in
2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USAIEEE, USA.
Fiore Sara, Luisier Mathieu (2020), Ab initio modeling of thermal transport through van der Waals materials, in
Physical Review Materials, 4(9), 094005-094005.
Klinkert Cedric, Szabó Áron, Stieger Christian, Campi Davide, Marzari Nicola, Luisier Mathieu (2020), 2-D Materials for Ultrascaled Field-Effect Transistors: One Hundred Candidates under the Ab Initio Microscope, in
ACS Nano, 14(7), 8605-8615.
Lee Y., Fiore S., Luisier M. (2019), Ab initio mobility of single-layer MoS 2 and WS 2 : comparison to experiments and impact on the device characteristics, in
2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USAIEEE, USA.
The goal of this project is to develop advanced simulation methodologies in order to shed light on the electro-thermal transport properties of single-layer 2-D materials and van der Waals heterostructures (vdWHs) made of two monolayers of transition metal dichalcogenide such as MoS2, MoTe2, or WSe2. The most challenging problems to address with this regard will consist in generating ab-initio Hamiltonian and dynamical matrices for complex 2-D atomic systems, deriving a general self-energy expression for the scattering of electrons with confined longitudinal optical phonons, evaluating the interplay between lattice temperature increases and structural deformations, and including anharmonic phonon decay processes in 2-D thermal transport. These issues will be solved by two Ph.D. students and implemented into an existing, state-of-the-art device simulator called OMEN. With these OMEN improvements it will be possible to quantify the influence of self-heating on the behavior of transistors with a 2-D channel and to determine whether the electron and phonon interactions present in vdWHs can be leveraged and engineered to create enhanced device functionalities, e.g. efficient nanoscale Peltier coolers or thermoelectric generators.