Project

Back to overview

Visual processing in foveated retinæ in the presence of self-motion

Applicant Hierlemann Andreas
Number 173728
Funding scheme Sinergia
Research institution Computational Systems Biology Department of Biosystems, D-BSSE ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Interdisciplinary
Start/End 01.01.2018 - 31.12.2022
Approved amount 2'256'064.00
Show all

All Disciplines (5)

Discipline
Interdisciplinary
Information Technology
Mathematics
Microelectronics. Optoelectronics
Neurophysiology and Brain Research

Keywords (5)

Information processing; Retina; Genetics; Electrophysiology; Microelectronics

Lay Summary (German)

Lead
Lebewesen bewegen sicht meist während sie mit dem Auge sehen oder optische Eindrücke wahrnehmen. Ziel des Projektes ist es herauszufinden, welche Rolle die Bewegungen des Auges oder Lebewesens bei der Informationsverarbeitung der Sehwahrnehmungen spielen.
Lay summary
 Lebewesen bewegen sich eigentlich immer, während sie mit dem Auge sehen oder optische Eindrücke wahrnehmen. Es gibt Bewegungen des ganzen Lebewesens, meist vorwärts, und zudem überlagerte Bewegungen der Augen, die sich bewusst oder unbewusst, willkürlich oder unwillkürlich in unterschiedliche Richtungen drehen können. Meist sind diese Bewegungen aktiv und ereignisgesteuert durch bestimmte visuelle Reize oder Ereignisse innerhalb des Sehfeldes.
Die Augenmotorik des Menschen ist ein sehr komplexes Systems mit einer Reihe von Regelkreisen. So dient die Netzhaut  oder Retina als eine Art Fühler oder Sensor mit einer ersten Signalverarbeitung, das Zentralnervensystem stellt Regelmechanismen zur Verfügung, und äußere Augenmuskeln bewegen dann die Augen. Mit der Änderung der Augenstellung geht auch eine Veränderung der Signal auf der Netzhaut einher, und hier schliesst sich der Kreis.

Ziel des Projektes ist es nun herauszufinden, welche Rolle die Bewegungen des Auges oder Lebewesens bei der Informationsverarbeitung der Sehwahrnehmungen in der Retina oder Netzhaut spielen. Dabei werden zwei Arten von Bewegung näher untersucht, grossräumigere gleichmässige Bewegungen des ganzen Auges oder Körpers und sogenannte Sakkaden, schnelle Bewegungen der Augen zur Erfassung eines neuen Ziels, bevor es dann mit den Augen fixiert wird.

Bei diesen Untersuchungen wird auch die Fovea miteingeschlossen, eine spezielle Region der Retina mit einer sehr hohen Dichte von Lichtrezeptoren (147.000 pro mm2). Die Fovea oder Sehgrube ist eine im Zentrum des sogenannten Gelben Flecks gelegene Einsenkung der Netzhaut (Retina) und der Bereich des schärfsten Sehens bei Säugetieren. Die Fovea des erwachsenen Menschen hat einen Durchmesser von circa 1,5 mm.

Direct link to Lay Summary Last update: 25.09.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Cholinergic Switch between Two Types of Slow Waves in Cerebral Cortex
Nghiem Trang-Anh E, Tort-Colet Núria, Górski Tomasz, Ferrari Ulisse, Moghimyfiroozabad Shayan, Goldman Jennifer S, Teleńczuk Bartosz, Capone Cristiano, Bal Thierry, di Volo Matteo, Destexhe Alain (2020), Cholinergic Switch between Two Types of Slow Waves in Cerebral Cortex, in Cerebral Cortex, bhz320.
The primate model for understanding and restoring vision
Picaud Serge, Dalkara Deniz, Marazova Katia, Goureau Olivier, Roska Botond, Sahel José-Alain (2019), The primate model for understanding and restoring vision, in Proceedings of the National Academy of Sciences, 116(52), 26280-26287.
Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans
Jüttner Josephine, Szabo Arnold, Gross-Scherf Brigitte, Morikawa Rei K., Rompani Santiago B., Hantz Peter, Szikra Tamas, Esposti Federico, Cowan Cameron S., Bharioke Arjun, Patino-Alvarez Claudia P., Keles Özkan, Kusnyerik Akos, Azoulay Thierry, Hartl Dominik, Krebs Arnaud R., Schübeler Dirk, Hajdu Rozina I., Lukats Akos, Nemeth Janos, Nagy Zoltan Z., Wu Kun-Chao, Wu Rong-Han, Xiang Lue, et al. (2019), Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans, in Nature Neuroscience, 22(8), 1345-1356.
Depicting brighter possibilities for treating blindness
Sahel José-Alain, Bennett Jean, Roska Botond (2019), Depicting brighter possibilities for treating blindness, in Science Translational Medicine, 11(494), eaax2324-eaax2324.
The first steps in vision: cell types, circuits, and repair
Roska Botond (2019), The first steps in vision: cell types, circuits, and repair, in EMBO Molecular Medicine, 11(3), 1-4.
Automatic spike sorting for high-density microelectrode arrays
Diggelmann Roland, Fiscella Michele, Hierlemann Andreas, Franke Felix (2018), Automatic spike sorting for high-density microelectrode arrays, in Journal of Neurophysiology, 120(6), 3155-3171.
Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration
Macé Émilie, Montaldo Gabriel, Trenholm Stuart, Cowan Cameron, Brignall Alexandra, Urban Alan, Roska Botond (2018), Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration, in Neuron, 100(5), 1241-1251.e7.
How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse
Drinnenberg Antonia, Franke Felix, Morikawa Rei K., Jüttner Josephine, Hillier Daniel, Hantz Peter, Hierlemann Andreas, Azeredo da Silveira Rava, Roska Botond (2018), How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse, in Neuron, 99(1), 117-134.e11.
Restoring vision
Roska Botond, Sahel José-Alain (2018), Restoring vision, in Nature, 557(7705), 359-367.
Virus stamping for targeted single-cell infection in vitro and in vivo
Schubert Rajib, Trenholm Stuart, Balint Kamill, Kosche Georg, Cowan Cameron S, Mohr Manuel A, Munz Martin, Martinez-Martin David, Fläschner Gotthold, Newton Richard, Krol Jacek, Scherf Brigitte Gross, Yonehara Keisuke, Wertz Adrian, Ponti Aaron, Ghanem Alexander, Hillier Daniel, Conzelmann Karl-Klaus, Müller Daniel J, Roska Botond (2018), Virus stamping for targeted single-cell infection in vitro and in vivo, in Nature Biotechnology, 36(1), 81-88.

Collaboration

Group / person Country
Types of collaboration
Nicholas Melosh / Stanford University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Society for Neuroscience (SfN) Meeting Poster Improved receptive-field characterization of retinal ganglion cells using a large field-of-view light stimuli 19.10.2019 Chicago, United States of America Hierlemann Andreas; Bucci Annalisa;
Society for Neuroscience (SfN) Meeting Poster How the coupling strength of horizontal cells effects the retinal processing of spatio-temporal light stimuli - Model and experiments 19.10.2019 Chicago, United States of America Hierlemann Andreas; Bucci Annalisa; da Silveira Rava Azeredo;
Society for Neuroscience (SfN) Meeting Poster Ex vivo mouse retinal recordings using HD-MEA systems: From characterizing single cells to analyzing populations 19.10.2019 Chicago, United States of America Hierlemann Andreas; Bucci Annalisa;
Society for Neuroscience (SfN) Meeting Poster How feedback at the first visual synapse shapes functional diversity in the retina 09.11.2018 San Diego, United States of America Roska Botond; da Silveira Rava Azeredo; Hierlemann Andreas;
11th FENS Forum of Neuroscience Poster How feedback inhibition at the first visual synapse shapes functional diversity in the retina 07.07.2018 Berlin, Germany Hierlemann Andreas; da Silveira Rava Azeredo; Roska Botond;
11th FENS Forum of Neuroscience Poster How diverse retinal functions arise at the first visual synapse 07.07.2018 Berlin, Germany Roska Botond; da Silveira Rava Azeredo; Hierlemann Andreas;
11th FENS Forum of Neuroscience Poster The role of horizontal cells in spatial computation in early visual processing 07.07.2018 Berlin, Germany Roska Botond; Hierlemann Andreas; Bucci Annalisa; da Silveira Rava Azeredo;
14th Federation of American Societies for Experimental Biology (FASEB) Science and Research Conference on Retinal Neurobiology and Visual Processing Poster How diverse retinal functions arise from feedback at the first visual synapse 24.06.2018 Olean, United States of America Hierlemann Andreas; da Silveira Rava Azeredo; Roska Botond;
14th Federation of American Societies for Experimental Biology (FASEB) Science and Research Conference on Retinal Neurobiology and Visual Processing Poster Horizontal cell feedback differentially shapes the response dynamics of distinct retinal output channels 24.06.2018 Olean, United States of America Roska Botond; Hierlemann Andreas; da Silveira Rava Azeredo;
11th International Meeting on Substrate Integrated Microelectrode Arrays (MEA Meeting) Poster Effective benchmarking of high-density MEA spike-sorters 04.06.2018 Reutlingen, Germany Hierlemann Andreas;


Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Public presentation of the activities of IOB Western Switzerland 2019

Awards

Title Year
Cloëtta Prize 2019
Louis-Jeantet Prize for Medicine 2019
Order of Saint Stephen of Hungary 2019
Semmelweis Budapest Award 2019
Alden W. Spencer Award for Neuroscience 2018
Bressler Prize in Vision Science 2018

Associated projects

Number Title Start Funding scheme
188910 Deciphering Neuronal Networks: Advancing Technology and Model Systems 01.10.2020 Project funding (Div. I-III)
166329 “Infected Body-on-a-Chip”: Microfluidic Impedance Platform for Antischistosomal Drug Discovery 01.11.2016 Interdisciplinary projects
163457 Linking retinal and cortical visual processing 01.10.2015 Project funding (Div. I-III)
182523 Connecting visual and cognitive brain circuits 01.01.2019 Project funding (Div. I-III)
157092 Microtechnology and microelectronics to study mammalian axons 01.09.2015 Project funding (Div. I-III)
141801 Image processing by mosaics of retinal cells 01.07.2013 Sinergia
141801 Image processing by mosaics of retinal cells 01.07.2013 Sinergia
198231 Large-chamber high-resolution field-emission scanning electron microscope and focused ion beam system 01.06.2021 R'EQUIP

Abstract

The visual input is influenced by self-motion in a number of qualitatively distinct ways. In our projected work, we will focus mainly on high-amplitude, directed self-motion, rather than on the low-amplitude, possibly random motion (such as fixational eye movements). We will be interested in the effects of saccades and smooth self-motion. Saccades are rapid, ballistic movements of the eye, which shift the image on the retina from one location to another. Smooth, global motion of the image on the retina results from eye or body movements; of particular behavioral interest is smooth pursuit motion, in which the eye rotates so as to stabilize a moving object on the retina.There are a number of technical and conceptual challenges to the study of visual processing in the presence of self-motion, which range from the design of the stimulus through recording of neuronal activity to the analysis of this activity. Saccadic motion cannot be simulated with standard stimulation devices. Different cell types in the retina come with different physiological properties and, in particular, different sensitivities to motion. In the presence of self-motion, we thus have to be able to examine processing in different cell types separately. In primates, smooth pursuit motion stabilizes a moving object on the fovea. Thus, it is important to have access to the activity of foveal cells, in which visual processing may be organized differently from processing in the periphery. Finally, global motion stimulates a large population of cells in the retina, and, hence, it is necessary to have the technological means to record from such large populations and to have the computational methods to analyze their outputs.We propose to investigate how identified types of ganglion cells, the output cells of the retina, represent visual information individually and collectively in the presence of self-motion, in non-human primate and human retinæ. We will combine expertise in engineering, biomedicine, neurobiology, and theoretical neuroscience to develop methods for adequately stimulating the retina and for recording the spiking activity from large populations of genetically and functionally identified ganglion cells. The use of a large microelectrode array to record simultaneously from the fovea and the periphery, together with computational analyses of the recorded activity, will allow us to characterize foveal and peripheral processing and their interaction.Our projected work will be innovative along several directions. First, it will provide the first description of the responses of identified human retinal ganglion cells. Second, it will yield insights about visual computations by neurons, through the analysis of the activity of a large fraction of the retina submitted to self-motion. Third, it will put forth a first paradigm for the study of the interaction between fovea and periphery in non-human primate and human retinæ. While the study of vision in the presence of self-motion has a long history in psychophysics, comparatively little is known on processing in neural circuits. Our proposed investigations will contribute to filling this gap.
-