Project

Back to overview

Formal stability assessment of hybrid distribution grids based on the correct modeling of the effect of synchronization of the power electronics interfaces

Applicant Paolone Mario
Number 173661
Funding scheme Project funding
Research institution Unité du Professeur Paolone EPFL - STI - IEL - UPPAOLONE
Institution of higher education EPF Lausanne - EPFL
Main discipline Electrical Engineering
Start/End 01.06.2017 - 31.05.2020
Approved amount 197'802.00
Show all

Keywords (6)

Stability Assessment; Hybrid Distribution Grids; Communication; Validation Approaches; Time-Domain Modeling; Synchronization

Lay Summary (French)

Lead
Le projet est focalisé sur le développement de méthodes pour la quantification formelle de la stabilité d'un réseau électrique ou les différentes resources énergétiques (generation renouvelable et traditionnelle, systèmes de stockage et charges) sont connectés avec interfaces réalisées par des convertisseurs électriques, donc, en absence de masses tournantes.
Lay summary

La présence d’une importante production d’énergie électrique par des systèmes de conversion solaires et éoliens décentralisés est une perspective réjouissante pour le futur de la planète. Cependant, elle peut aussi poser des problèmes nouveaux pour l’exploitation des réseaux électriques. Les méthodes traditionnelles de contrôle de la fréquence, tension et congestion de lignes ne suffisent plus et demandent à être complétées par des contrôles explicites. Un défi majeur est de rendre un tel contrôle fiable par rapport à la stabilité du réseau. Dans ce contexte, le projet est focalisé sur le développement de méthodes pour la quantification formelle de la stabilité d'un réseau électrique ou les différentes resources énergétiques (generation, stockage et charge) sont connectés avec interfaces réalisées par des convertisseurs électriques, donc, en absence de masses tournantes. Le projet est développé dans le contexte du programme de recherche "Lead Agency" entre le FNS et la DFG (Allemagne). En particulier, le projet est basé sur une collaboration entre le Laboratoire des Systèmes Electriques Distribués de l'EPFL et le Laboratoire d'Electronique de Puissance du Christian-Albrechts-Universität zu Kiel, Allemagne. 

Direct link to Lay Summary Last update: 20.07.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Harmonic Power-Flow Study of Polyphase Grids with Converter-Interfaced Distributed Energy Resources, Part I: Modelling Framework and Algorithm
Kettner Andreas Martin, Reyes-Chamorro Lorenzo, Becker Johanna Kristin Maria, Zou Zhixiang, Liserre Marco, Paolone Mario (2021), Harmonic Power-Flow Study of Polyphase Grids with Converter-Interfaced Distributed Energy Resources, Part I: Modelling Framework and Algorithm, in IEEE Transactions on Smart Grid, -(-), 1-12.
Harmonic Power-Flow Study of Polyphase Grids with Converter-Interfaced Distributed Energy Resources, Part II: Model Library and Validation
Becker Johanna Kristin Maria, Kettner Andreas Martin, Reyes-Chamorro Lorenzo, Zou Zhixiang, Liserre Marco, Paolone Mario (2021), Harmonic Power-Flow Study of Polyphase Grids with Converter-Interfaced Distributed Energy Resources, Part II: Model Library and Validation, in IEEE Transactions on Smart Grid, -(-), 1-12.
Microgrid Stability Definitions, Analysis, and Examples
Farrokhabadi Mostafa, Lagos Dimitris, Wies Richard W., Paolone Mario, Liserre Marco, Meegahapola Lasantha, Kabalan Mahmoud, Hajimiragha Amir H., Peralta Dario, Elizondo Marcelo A., Schneider Kevin P., Canizares Claudio A., Tuffner Francis K., Reilly Jim, Simpson-Porco John W., Nasr Ehsan, Fan Lingling, Mendoza-Araya Patricio A., Tonkoski Reinaldo, Tamrakar Ujjwol, Hatziargyriou Nikos (2020), Microgrid Stability Definitions, Analysis, and Examples, in IEEE Transactions on Power Systems, 35(1), 13-29.
On the Properties of the Compound Nodal Admittance Matrix of Polyphase Power Systems
Kettner Andreas Martin, Paolone Mario (2019), On the Properties of the Compound Nodal Admittance Matrix of Polyphase Power Systems, in IEEE Transactions on Power Systems, 34(1), 444-453.
Microgrid Stability Definitions, Analysis, and Modeling
Canizares Claudio A, Reilly Jim, Palma Behnke Rodrigo, Farrokhabadi Mostafa, Simpson-Porco John W., Nasr-Azadani Ehsan, Lingling Fan, Mendoza Araya Patricio M., Tonkoksi Reinaldo, Tamrakar Ujjwol, Hatziargyriou Nikos, Lagos Dimitris, Wies Richard W., Paolone Mario, Liserre Marco, Meegahapola Lasantha, Kabalan Mahmoud, Hajimiragha Amir H., Peralta Dario, Elizondo Marcelo, Schneider Kevin P., Tuffner Frank (2018), Microgrid Stability Definitions, Analysis, and Modeling, IEEE, New York City, NY, USA.
Fundamentals of Power System Modelling in the Presence of Converter-Interfaced Generation
Paolone Mario, Gaunt Trevor, Guillaud Xavier, Liserre Marco, Meliopoulos Sakis, Monti Antonello, Van Cutsem Thierry, Vittal Vijay, Vournas Costas, Fundamentals of Power System Modelling in the Presence of Converter-Interfaced Generation, in Electric Power Systems Research, Porto, PortugalElsevier, Amsterdam, Netherlands.

Associated projects

Number Title Start Funding scheme
153997 Integration of Intermittent Widespread Energy Sources in Distribution Networks: Scalable and Reliable Real Time Control of Power Flows 01.12.2014 NRP 70 Energy Turnaround
197060 Robust Control Design of Converter-Interfaced Resources in Hybrid Electricity Grids under Consideration of Harmonic Stability 01.01.2021 Project funding

Abstract

Hybrid grids, which incorporate both AC and DC technologies, use power electronics converters to interface distributed energy resources, energy storage systems, and modern types of loads (such as EV charging stations) with high or medium voltage AC or DC grids. Such grid-connected converters rely on control algorithms and synchronization systems, and (as of late) on commu-nication infrastructures, with the aim of providing smart grid functionalities. It has been demonstrated that the widespread use of grid-connected converters may lead to a scenario where the grid is largely decreasing its inertia. If a network features a lack of inertia as well as a topology and line characteristics that result in operation close to voltage collapse, it is classified as weak. In a weak network, the stability of the system is a major concern. This project focuses on stability issues in weak microgrids. Currently, there are no quantitative methods that would allow assessing the stability margin as a function of the system topology, the system state, and the primary control laws. In particular, the influence of the synchronization elements and the communication infrastructure on the stability has not been well investigated in the existing lit-erature, although it has been demonstrated that they do indeed have an impact. Due to the general lack of investigations in this field, adequate models to describing such effects as well as standardized approaches for thoroughly validating such models are currently missing. This pro-ject aims at filling these major gaps in the existing works by developing a general framework for investigating stability issues in hybrid grids. To start with, formal methods for quantifying the static and dynamic stability margin of hybrid grids, while taking into account the effects of syn-chronization and communication, shall be elaborated. Such methods are an enabling factor for real-time stability assessment and the design of robust controllers. Moreover, a benchmark li-brary of accurate time-domain models of hybrid distribution grids shall be developed. In doing so, special attention will be given to modeling the finite bandwidth of synchronization elements and the finite latency communication network. Finally, a thorough validation of the developed stability assessment tools and time-domain models shall be conducted using a combination of power-hardware-in-the-loop and real-scale microgrid experiments. Thereby, close-to-reality experimental conditions can be achieved while ensuring a minimum level of approximation. This framework is expected to grant deeper insights into the stability issues encountered in hy-brid distribution grids, and how they can be modeled and detected.
-