Project

Back to overview

Tailored Design and in-depth understanding of perovskite solar materials using in-house developed 3D/4D nanoscale ion-beam analysis

English title Tailored Design and in-depth understanding of perovskite solar materials using in-house developed 3D/4D nanoscale ion-beam analysis
Applicant Nazeeruddin Mohammad Khaja
Number 172929
Funding scheme Project funding
Research institution Institut des sciences et ingénierie chimiques EPFL - SB - ISIC
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.11.2017 - 31.12.2020
Approved amount 539'388.00
Show all

All Disciplines (4)

Discipline
Material Sciences
Inorganic Chemistry
Physical Chemistry
Organic Chemistry

Keywords (6)

Helium Ion Microscopy; Secondary Ion Mass Spectrometry; Focused Ionbeam Microscopy; Nanoscale analysis; Organic-inorganic hybrid perovskite materials; Solar Cells

Lay Summary (German)

Lead
Um den ansteigenden Forderungen nach sauberer Energie entgegen zu kommen, muss sowohl die Grundlagenforschung als auch die angewandte Forschung für erneuerbaren Energien ausgebaut werden. Solarenergie zählt zu den Schlüsseltechnologien die einen grossen Beitrag dazu leisten kann. Da die gängige Solarzellen-Technologie ist jedoch fast am theroretischen Limit angelangt ist was deren Wirkungsgrad betrifft, ist es wichtig sich mit neuartigen, billigen, innovativen und leichten Materialien wie Perovskiten zu befassen.
Lay summary

Ziele

Solar4D zielt darauf ab die Forschungsschwerpunkte von zwei spezialisierten Forschungsgruppen miteinander zu verbinden um einerseits besseres Verständnis für die Funktionsweise von Perowskit-Solarzellen zu erreichen und andererseits neuartige, umweltfreundliche Perowskit-Solarzellen zu entwickeln.

Die Perowskit-Solarzellentechnologie zählte laut dem World Economic Forum (WEF) im Jahr 2016 zu den Top10 der neuartigen Technoligen weltweit. Ein umfänglicher Forschungsaufwand um die Optimisierung dieses Materials voranzubringen wurde in den letzten Jahren aufgebracht. Es bleiben jedoch viele Fragen bezüglich der exzellenten optoelektronischen Eigenschaften offen. Grösstenteils sind diese Eigenschaften nur im Nanobereich zu verstehen. Insbesondere spielt die chemische Zusammensetzung und Verteilung der chemischen Elemente eine wichtige Rolle.

Wir versuchen die Elementzusammensetzung im Nano-Bereich mit Hilfe von Focused Ion Beam (FIB), ausgestattet mit einem hausintern entwickeltem Sekundärionen-Massenspektrometrie Detektor aufzuspüren. Dies wird zu einem sehr viel besseren Verständnis des Materials führen und deshalb die Entwicklung von umweltfreundlicheren und besseren Perowskiten fördern.

Wissenschaftlicher Rahmen

Die Anwendungsgebiete für die Perowskit-Materialien, die innerhalb dieses Projektes untersucht und entwickelt werden, sind zahlreich und nicht ausschliesslich auf Solarzellen beschränkt. Dieses Projekt wird fundamentale Fragen zum Halbleiter Perowskit beantworten und deshalb auch der Entwicklung von LED, Lasern oder Photodetektoren dienlich sein.

Schlüsselwörter

Solarzellen, Perowskit, Sekundärionen-Massenspektrometrie, Elementzusammensetzung, Nano-Bereich

Direct link to Lay Summary Last update: 26.09.2017

Lay Summary (French)

Lead
La recherche fondamentale et appliquée sur les énergies renouvelables est indispensable pour pouvoir assouvir le besoin grandissant en énergie propre de notre société. L’énergie solaire est largement identifiée comme une des technologies clés qui permet de relever ce défi. La technologie des cellules solaires actuellement sur le marché est arrivée à ses limites d’efficacité théorique, ce qui justifie les efforts de recherche de nouveaux matériaux à la fois moins onéreux, plus innovatifs et plus légers.
Lay summary

Objectifs

SOLAR4D a comme objectif de regrouper les efforts de deux groupes de recherche spécialisés dans leur domaine respectif afin de mieux comprendre le fonctionnement des cellules solaires basées sur le semiconducteur hybride perovskite et de découvrir de nouveaux matériaux perovskites hybrides plus écologiques.

Actuellement, les cellules solaires à perovskite sont identifiées comme « une des 10 technologies émergentes de 2016 » par le « Forum économique mondial (WEF) ». Un effort très considérable a été mené ces dernières années afin d’optimiser et étudier ce matériau. Néanmoins, de nombreuses questions concernant les excellentes propriétés optoélectroniques de ce matériau restent ouvertes. Ceci est dû au fait que ces propriétés sont étroitement liées à la composition chimique et à la structure à l’échelle nanométrique. Nous proposons d’élucider la composition nanométrique des perovskites à l’aide de microscopes à faisceau ionique équipés d’un détecteur à ions secondaires unique, développé en interne. Ceci permettra de découvrir quelles propriétés sont inhérentes au bon fonctionnement de ce matériau et d’ainsi développer de nouvelles perovskites plus stables, plus efficaces et plus écologiques.

Contexte scientifique

Les applications utilisant le semiconducteur perovskite sont très nombreuses et pas limitées aux cellules solaires. Ce projet permettra de faire des découvertes fondamentales sur le matériau perovskite, bénéficiant ainsi également aux chercheurs dans les domaines tels que les LEDs, lasers et photodétecteurs par exemple.

Mots-clés

Cellule solaire, perovskite, microscope à ions, composition chimique, échelle nanométrique

Direct link to Lay Summary Last update: 26.09.2017

Lay Summary (Italian)

Lead
Una ricerca di base sia a livello fondamentale che applicata nel campo delle energie rinnovabili è oggigiorno essenziale per soddisfare il crescente fabbisogno energetico e la richiesta di energia pulita. Tra le rinnovabili, l'energia solare riveste un ruolo fondamentale ed è la soluzione per affrontare nel prossimo futuro la sfida energetica. Ad oggi, le tecnologie presenti hanno raggiunto livelli di efficienza di conversione fotovoltaica pari ai limiti teorici. Questo spinge la ricerca attuale verso nuovi materiali efficienti e allo stesso tempo meno costosi, più innovativi e leggeri.
Lay summary

obiettivi

SOLAR4D mira a consolidare gli sforzi congiunti di due gruppi di ricerca specializzati nei rispettivi campi ( fabbricazione di celle solare e caratterizzazione con tecniche di microsocpia avanzate) per investigare in dettaglio il funzionamento delle celle solari basate su semiconduttori ibridi a base di perovskite, con il fine ultimo di scoprire nuove perovskiti ibride.

Attualmente, le cellule solari perovskite sono identificate come "una delle 10 tecnologie emergenti del 2016" dal "World Economic Forum (WEF)". Negli ultimi anni è stato compiuto un notevole sforzo per ottimizzare e studiare questo materiale. Tuttavia, molte delle peculiari proprietà optoelettroniche di questo materiale rimangono ancora oscure. Ciò è dovuto al fatto che tali proprietà sono strettamente correlate alla composizione chimica e alla struttura cristallina del materiale a livello nanometrico. Questo progetto ha l’obiettivo di investigare e studiare la composizione chimica delle perovskiti a livello nanometrico utilizzando avanzati microscopi a raggi ionici dotati di un singolo rivelatore di ioni secondario sviluppato in-house. Ciò consentirà di rivelare le proprietà optoelettroniche e la loro relazione al corretto funzionamento di questo materiale, con il fine ultimo di sviluppare nuove perovskites più stabili, più efficienti e più ecologiche.

Contesto scientifico

Le applicazioni che utilizzano il semiconduttore a base di perovskite sono numerose e non limitate alle celle solari. Questo progetto andrà a rivelare proprietà fondamentali del materiale perovskite, di importanza cruciale anche per i lloro utilizzo in altri settori di ricerca quali LED, laser e fotorecettori.

Parole

Cella solare, perovskite, microscopio ionico, composizione chimica, scala nanometrica

 

 

 

Direct link to Lay Summary Last update: 26.09.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Light Stability Enhancement of Perovskite Solar Cells Using 1H , 1H , 2H , 2H ‐Perfluorooctyltriethoxysilane Passivation
Kanda Hiroyuki, Usiobo Onovbaramwen J., Momblona Cristina, Abuhelaiqa Mousa, Sutanto Albertus Adrian, Igci Cansu, Gao Xiao-Xin, Audinot Jean-Nicolas, Wirtz Tom, Nazeeruddin Mohammad Khaja (2020), Light Stability Enhancement of Perovskite Solar Cells Using 1H , 1H , 2H , 2H ‐Perfluorooctyltriethoxysilane Passivation, in Solar RRL, 2000650-2000650.
Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors
Usiobo Onovbaramwen Jennifer, Kanda Hiroyuki, Gratia Paul, Zimmermann Iwan, Wirtz Tom, Nazeeruddin Mohammad Khaja, Audinot Jean-Nicolas (2020), Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors, in The Journal of Physical Chemistry C, 124(42), 23230-23236.
Gradient band structure: high performance perovskite solar cells using poly(bisphenol A anhydride- co -1,3-phenylenediamine)
Kanda Hiroyuki, Shibayama Naoyuki, Abuhelaiqa Mousa, Paek Sanghyun, Kaneko Ryuji, Klipfel Nadja, Sutanto Albertus Adrian, Carmona Cristina Roldán, Huckaba Aron Joel, Kim Hobeom, Momblona Cristina, Asiri Abdullah M., Nazeeruddin Mohammad Khaja (2020), Gradient band structure: high performance perovskite solar cells using poly(bisphenol A anhydride- co -1,3-phenylenediamine), in Journal of Materials Chemistry A, 8(33), 17113-17119.
Optoelectronic and Energy Level Exploration of Bismuth and Antimony-Based Materials for Lead-Free Solar Cells
Nishikubo Ryosuke, Kanda Hiroyuki, García-Benito Inés, Molina-Ontoria Agustín, Pozzi Gianluca, Asiri Abdullah M., Nazeeruddin Mohammad Khaja, Saeki Akinori (2020), Optoelectronic and Energy Level Exploration of Bismuth and Antimony-Based Materials for Lead-Free Solar Cells, in Chemistry of Materials, 32(15), 6416-6424.
The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range
Fedorovskiy Alexander E., Drigo Nikita A., Nazeeruddin Mohammad Khaja (2020), The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range, in Small Methods, 4(5), 1900426-1900426.
Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor
Kanda Hiroyuki, Shibayama Naoyuki, Huckaba Aron Joel, Lee Yonghui, Paek Sanghyun, Klipfel Nadja, Roldán-Carmona Cristina, Queloz Valentin Ianis Emmanuel, Grancini Giulia, Zhang Yi, Abuhelaiqa Mousa, Cho Kyung Taek, Li Mo, Mensi Mounir Driss, Kinge Sachin, Nazeeruddin Mohammad Khaja (2020), Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor, in Energy & Environmental Science, 13(4), 1222-1230.
Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer
Zimmermann Iwan, Gratia Paul, Martineau David, Grancini Giulia, Audinot Jean-Nicolas, Wirtz Tom, Nazeeruddin Mohammad Khaja (2019), Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer, in Journal of Materials Chemistry A, 7(14), 8073-8077.
Lead and HTM Free Stable Two‐Dimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications
Zimmermann Iwan, Aghazada Sadig, Nazeeruddin Mohammad Khaja (2019), Lead and HTM Free Stable Two‐Dimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications, in Angewandte Chemie International Edition, 58(4), 1072-1076.
The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process
Gratia Paul, Zimmermann Iwan, Schouwink Pascal, Yum Jun-Ho, Audinot Jean-Nicolas, Sivula Kevin, Wirtz Tom, Nazeeruddin Mohammad Khaja (2017), The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process, in ACS Energy Letters, 2(12), 2686-2693.

Associated projects

Number Title Start Funding scheme
171000 EPISODE: Engineering of advanced hybrid Perovskite for Integration with Silicon photovoltaic Optoelectronic DEvices 01.06.2017 Sinergia
154056 Preparation and characterization of high efficiency hybrid organic-inorganic thin film solar cells 01.10.2014 NRP 70 Energy Turnaround

Abstract

Perovskite photovoltaics, appearing in the list of the “Top 10 Emerging Technologies of 2016”1, promises to be a major player in the near future carbon-free energy landscape. The perovskite solar cell technology has been already proven to be remarkably efficient and has scope to compete with the very best crystalline semiconductor and thin film photovoltaic systems while offering the very lowest potential cost for materials and solution processed manufacturing. Indeed, organic-inorganic perovskites have revolutionized the field of thin film solar cells because of their remarkably fast increase in power conversion efficiency (PCE) which now reaches 22.1%2,3,4. The original perovskite structure ABX3 where A=Methylammonium (MA) or Formamidinium (FA), B=Pb and X=I, rapidly evolved into complex mixed cation/mixed halide perovskites, e.g. (FAPbI3)0.85(MAPbBr3)0.15, which currently hold the lead in terms of solar cell efficiency. The higher efficiency compared to MAPbI3 perovskite structures has been generically attributed to the improved crystal quality of the film5, however, the exact reasons remain under intense debate. In particular, there is a complete lack of understanding of the nanoscale composition and structure of these mixed perovskite materials. Our preliminary collaboration (EPFL-LIST) has demonstrated that nanoscale secondary ion mass spectrometry (SIMS) is a very powerful approach to directly map the elemental composition of the surface of the active Perovskite-layer (paper submitted6). While this informal collaboration focused on the feasibility of the project (only surface analysis so far), we now plan to move one step further towards nanoscale correlative microscopy, i.e. combining morphology images obtained from secondary electrons with analytical (chemical) information obtained through SIMS. To achieve this goal, we will use the fact that LIST has recently developed SIMS systems dedicated to the Helium Ion Microscope (HIM) and DualBeam Gallium-Focused Ion Beam Microscope (Ga-FIB) that are unique in the world. In this research project, we plan to team up in order to gain unprecedented insight into perovskite materials by systematically analyzing their nanoscale elemental composition. This correlative nano-characterization performed by novel HIM-SIMS and FIB-SIMS microscopy will allow us to elucidate what makes the lead-based perovskite material so efficient. Using this knowledge, we will tailor design new material compositions that specifically meet the needs for the highest efficiencies and stability. More in general, this knowledge will provide guidance for the development of lead-free perovskite materials. As perovskite materials have been shown to be very interesting for other optoelectronic devices such as LED’s7 and lasers8, in addition to the afore-discussed solar cell applications, the findings of this proposal are relevant for future low-cost energy systems in general.
-