Project

Back to overview

Resolving dissolution-precipitation processes in porous media: Pore-scale lattice Boltzmann modelling combined with synchrotron based X-ray characterization

English title Resolving dissolution-precipitation processes in porous media: Pore-scale lattice Boltzmann modelling combined with synchrotron based X-ray characterization
Applicant Prasianakis Nikolaos
Number 172618
Funding scheme Project funding (Div. I-III)
Research institution Nukleare Energie und Sicherheit Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Geochemistry
Start/End 01.02.2018 - 30.04.2022
Approved amount 253'550.00
Show all

All Disciplines (2)

Discipline
Geochemistry
Mineralogy

Keywords (9)

micropore; dissolution precipitation; X-ray characterization; lattice Boltzmann; porous media; materials; permeability; diffusivity; nucleation theory

Lay Summary (German)

Lead
Auflösung-Ausfällungsreaktionen in porösen Medien bestimmen das Verhalten vieler geochemischer Prozesse und Industrieanwendungen. Dazu zählen z.B. die Gewinnung geothermischer Energie und Erdöl, die Evolution von Tiefenlager für radioaktive Abfälle, sowie die Entwicklung pharmazeutischer Produkte, Batterien, Katalysatoren. Die Auflösung oder Ausfällung von Festphasen kann den Porenraum des Mediums, und somit den Transport gelöster Substanzen (z.B. giftige Metalle), in komplexer Art und Weise verändern. Moderne reaktive Transportmodelle und Simulationen berücksichtigen solche Phänomene und schaffen die Grundlage zu deren Verständnis.
Lay summary

Häufig werden solche Simulationen auf makroskopischer Ebene (Feldskala) durchgeführt. Dabei werden bestimmte Prozesse, welche auf  mikroskopischer Skala stattfinden, vereinfacht durch gemittelte Parameter dargestellt. Zum Beispiel werden die durch chemische Reaktionen verursachten Durchlässigkeits- und Diffusivitätänderungen in einem porösen Medium mit empirischen Gesetzen und justierbaren Parametern beschrieben. Es gibt eindeutige Hinweise, dass makroskopische Eigenschaften des porösen Mediums (Durchlässigkeit und Diffusivität) nicht-linear von chemisch-physikalischen Prozessen abhängen, die auf der Porenskala stattfinden. Dieses Projekt kombiniert fortgeschrittene Lattice-Boltzmann Modelle auf der Porenskala mit klassischer Nukleationstheorie und modernsten Charakterisisrungmethoden  (Synchrotron-basierte Röntgenstrahlenmethoden). Ziel ist es, ein Fenster für ein besseres Verständnis und eine genauere Vorhersehbarkeit solcher Prozesse zu öffnen.

Durch diese Arbeit soll ein verbessertes Verständnis der mikroskopischen Mechanismen geschafft werden, welche Auflösung-/Ausfällungsreaktionen kontrollieren. Dadurch   erhofft man sich Einsicht zu gewinnen, wie solche Mechanismen die hydraulischen Eigenschaften poröser Gesteine, und deren Wirken auf relevante geochemische Prozesse, beeinflussen.


Direct link to Lay Summary Last update: 24.11.2017

Responsible applicant and co-applicants

Employees

Name Institute

Project partner

Natural persons


Name Institute

Publications

Publication
Neural network based process coupling and parameter upscaling in reactive transport simulations
Prasianakis N.I., Haller R., Mahrous M., Poonoosamy J., Pfingsten W., Churakov S.V. (2020), Neural network based process coupling and parameter upscaling in reactive transport simulations, in Geochimica et Cosmochimica Acta, 291, 126-143.
Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set
Molins S., Soulaine C., Prasianakis N.I., Abbasi A., Poncet P., Ladd A.J.C., Starchenko V., Roman S., Trebotich D., Tchelepi H.A., Steefel C.I. (2020), Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set, in Computational Geosciences, 1.
A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces
Poonoosamy J., Westerwalbesloh C., Deissmann G., Mahrous M., Curti E., Churakov S.V., Klinkenberg M., Kohlheyer D., von Lieres E., Bosbach D., Prasianakis N.I. (2019), A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces, in Chemical Geology, 528, 119264.
Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations
Prasianakis N.I., Gatschet M., Abbasi A., Churakov S.V. (2018), Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations, in Geofluids, 2018(9260603), 1.

Collaboration

Group / person Country
Types of collaboration
Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Institute of Geological Sciences, University of Bern Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Lawrence Berkeley National Laboratory, Berkeley, CA, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
CRYSPOM 2018, Crystallization in porous media VI Talk given at a conference scale reactive transport modelling of precipitation processes in porous media 19.09.2020 Hamburg, Germany Prasianakis Nikolaos; Grolimund Daniel; Curti Enzo; Mahrous Mohamed;
Goldschmidt 2020 Talk given at a conference Machine Learning Based Process Coupling and Multiscale Modelling of Reactive Transport Phenomena 21.06.2020 Hawaii, United States of America Prasianakis Nikolaos;
international workshop on “How to integrate geochemistry at affordable costs into reactive transport for large-scale systems? Talk given at a conference Machine Learning Enhanced Process Coupling and Parameter Upscaling in Reactive Transport Simulations 05.02.2020 Dresden, Germany Mahrous Mohamed; Prasianakis Nikolaos;
Goldschmidt 2019 Talk given at a conference Approaches for Porosity & Permeability Initialization in Continuum-Scale Reactive Transport Simulations 18.08.2019 Barcelona, Spain Prasianakis Nikolaos; Mahrous Mohamed; Curti Enzo;
The Sixteenth International Conference for Mesoscopic Methods in Engineering and Science (ICMMES) Talk given at a conference Microfluidic numerical diagnostics for the interpretation of lab-on-a-chip mineral precipitation experiments 23.07.2019 Edinburgh, Great Britain and Northern Ireland Mahrous Mohamed; Curti Enzo; Prasianakis Nikolaos;


Abstract

Precipitation and dissolution reactions in porous media dominate and control a large number of geochemical processes and industrial applications that span from geothermal energy and oil industry to pharmaceutical products, batteries, catalysts and to long-term nuclear waste containment. The precipitation-dissolution of minerals from aqueous solutions alters the pore space and its connectivity in a way that has a complex feedback to the ion transport in aqueous phase itself. Reactive transport models and simulations are providing the framework to understand and predict such phenomena. Very often, simulations are done at the macroscopic level (field scale) using a simplified description of the processes that actually take place at the microscale. For example, the change in permeability and diffusivity of a porous medium due to reactions is correlated to a global change of the bulk porosity in the medium, using empirical laws with adjustable parameters. There are clear evidences that the macroscopic properties of the medium depend on the physical and chemical processes that occur at the micropore scale in a strongly non-linear way. It is therefore not surprising, that smooth simplified relations, frequently are inadequate to predict accurately the temporal evolution of the system of interest. It is the microscopic physics per se that ultimately control the macroscopic processes. Fundamental in-depth understanding and accurate prediction of the underlying processes can be enhanced by direct pore-scale modeling, supported by experimental investigations.This project aims at:(i)combining a state-of-the-art reactive transport algorithm with classical nucleation theory concept;(ii)modelling competing precipitation mechanisms along with dissolution in realistic systems;(iii)using advanced synchrotron-based X-ray techniques to gain insight of the micro-meter level processes;(iv)validating the resulting numerical modelling framework against reactive transport experiments.The modelling activities will be based on the lattice Boltzmann (LB) numerical method and will be supported with results obtained from reactive transport experiments and advanced instrumental diagnostics with special focus to the celestite-barite system. The selection of the celestite-barite system is primarily motivated by the environmental relevance of barite scale formation in industrial applications related to large scale geochemical systems (oil exploration, geothermal heat extraction, uranium mining) and by the availability of an exceptionally complete set of thermodynamic and kinetic data. Moreover, results and samples of relevant reactive transport experiments have been already produced in-house, in the framework of a recently completed PhD thesis (2016). Therein, a simple system consisting of reactive celestite (SrSO4) intermixed with a comparatively inert matrix (quartz sand) was selected. By saturating the pore space with barium chloride solution (BaCl2), celestite is partially dissolved and replaced by the more insoluble barite (BaSO4) thus modifying the hydraulic properties of the medium (porosity, permeability, connectivity). Further characterization of experimental results will be carried out and analyzed at the Swiss Light Source (SLS) synchrotron, by means of advanced synchrotron-based X-ray techniques, including micro X-ray diffraction/fluorescence and 3D-microtomography. The prospected methodology will be able to describe, as a function of time and at high spatial resolution (micrometer scale), a number of observable processes and mechanisms, such as precipitation via homogeneous (nano-crystalline) and heterogeneous nucleation (epitaxial growth). The obtained results are expected to provide fundamental insights on the microscopic mechanisms governing dissolution-precipitation reactions and on how these mechanisms are affecting bulk hydraulic properties in geochemically relevant porous media.
-