Project

Back to overview

Topological multilayer spin textures for nanoscale magnon emission and propagation

Applicant Raabe Jörg
Number 172517
Funding scheme Project funding
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.03.2018 - 28.02.2022
Approved amount 278'552.00
Show all

Keywords (5)

timeresolved x-ray microscopy; Magnetic vortices; Skyrmions; Magnetisation dynamics; Spinwaves

Lay Summary (German)

Lead
In der heutigen Informationstechnologie dienen magnetische Systeme primär der Speicherung von grossen Datenmengen in Form von Festplatten und Magnetbändern. Magnetische Systeme zeigen jedoch auch interessante dynamische Eigenschaften, die in diesem Projekt studiert werden. Es handelt sich dabei um sogenannte Spinwellen, oder Magnonen, die Anregungen in magnetischen Materialien darstellen.
Lay summary

Inhalt und Ziel des Forschungsprojekts
Im Rahmen des Forschungsprojekts soll die Erzeugung, der Transport, sowie die Manipulation und Detektion von Spinwellen mit Hilfe von zeitaufgelöster Röntgenmikroskopie studiert werden. Dabei werden entsprechende, typischerweise Mikrometer grosse, Strukturen mit lithographischen Methoden hergestellt um verschiedene Konzepte zu testen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Heutige Informationsverarbeitungssysteme verwenden Ströme und Ladungen zur Speicherung und Verarbeitung von Informationen. Der Übergang zu magnetischer Informationsübertragung und -verarbeitung verspricht unter anderem eine Reduktion des Energieverbrauchs. Die hier durchgeführte Forschung soll die Möglichkeiten dieser neuer Technologie aufzeigen und für Anwendungen erschliessen.

Direct link to Lay Summary Last update: 21.02.2018

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Nonstationary spin waves in a single rectangular permalloy microstrip under uniform magnetic excitation
Pile Santa, Stienen Sven, Lenz Kilian, Narkowicz Ryszard, Wintz Sebastian, Förster Johannes, Mayr Sina, Buchner Martin, Weigand Markus, Ney Verena, Lindner Jürgen, Ney Andreas (2022), Nonstationary spin waves in a single rectangular permalloy microstrip under uniform magnetic excitation, in Physical Review B, 105(9), 094415-094415.
Roadmap on Spin-Wave Computing
Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A., Akerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Mayr S., et al. (2022), Roadmap on Spin-Wave Computing, in IEEE Transactions on Magnetics, 1-1.
Three-Dimensional Vortex Gyration Dynamics Unraveled by Time-Resolved Soft X-ray Laminography with Freely Selectable Excitation Frequencies
Finizio Simone, Donnelly Claire, Mayr Sina, Hrabec Aleš, Raabe Jörg (2022), Three-Dimensional Vortex Gyration Dynamics Unraveled by Time-Resolved Soft X-ray Laminography with Freely Selectable Excitation Frequencies, in Nano Letters, 22(5), 1971-1977.
Xenon Plasma Focused Ion Beam Milling for Obtaining Soft X-ray Transparent Samples
Mayr Sina, Finizio Simone, Reuteler Joakim, Stutz Stefan, Dubs Carsten, Weigand Markus, Hrabec Aleš, Raabe Jörg, Wintz Sebastian (2021), Xenon Plasma Focused Ion Beam Milling for Obtaining Soft X-ray Transparent Samples, in Crystals, 11(5), 546-546.
Spin-Wave Emission from Vortex Cores under Static Magnetic Bias Fields
Mayr Sina, Flajšman Lukáš, Finizio Simone, Hrabec Aleš, Weigand Markus, Förster Johannes, Stoll Hermann, Heyderman Laura J., Urbánek Michal, Wintz Sebastian, Raabe Jörg (2021), Spin-Wave Emission from Vortex Cores under Static Magnetic Bias Fields, in Nano Letters, 21(4), 1584-1590.
Field- and Current-Driven Magnetic Domain-Wall Inverter and Diode
Luo Zhaochu, Schären Stefan, Hrabec Aleš, Dao Trong Phuong, Sala Giacomo, Finizio Simone, Feng Junxiao, Mayr Sina, Raabe Jörg, Gambardella Pietro, Heyderman Laura J. (2021), Field- and Current-Driven Magnetic Domain-Wall Inverter and Diode, in Physical Review Applied, 15(3), 034077.
Time-resolved visualization of the magnetization canting induced by field-like spin–orbit torques
Finizio Simone, Wintz Sebastian, Mayr Sina, Huxtable Alexandra J., Langer Manuel, Bailey Joe, Burnell Gavin, Marrows Christopher H., Raabe Jörg (2020), Time-resolved visualization of the magnetization canting induced by field-like spin–orbit torques, in Applied Physics Letters, 117(21), 212404-212404.
Time-of-arrival detection for time-resolved scanning transmission X-ray microscopy imaging
Finizio Simone, Mayr Sina, Raabe Jörg (2020), Time-of-arrival detection for time-resolved scanning transmission X-ray microscopy imaging, in Journal of Synchrotron Radiation, 27(5), 1320-1325.
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Donnelly Claire, Finizio Simone, Gliga Sebastian, Holler Mirko, Hrabec Aleš, Odstrčil Michal, Mayr Sina, Scagnoli Valerio, Heyderman Laura J., Guizar-Sicairos Manuel, Raabe Jörg (2020), Time-resolved imaging of three-dimensional nanoscale magnetization dynamics, in Nature Nanotechnology, 15(5), 356-360.
Current-induced dynamical tilting of chiral domain walls in curved microwires
Finizio Simone, Wintz Sebastian, Mayr Sina, Huxtable Alexandra J., Langer Manuel, Bailey Joe, Burnell Gavin, Marrows Christopher H., Raabe Jörg (2020), Current-induced dynamical tilting of chiral domain walls in curved microwires, in Applied Physics Letters, 116(18), 182404-182404.

Associated projects

Number Title Start Funding scheme
183304 Microwaves for coherent control of quantum matter and magnonic devices 01.12.2018 R'EQUIP
125039 Optimierung des Schaltvorgangs in mesoskopischen magnetischen Strukturen 01.09.2010 Project funding

Abstract

The main goal of this project is the detailed study of spinwave generation and manipulation in different ferromagnetic SystemsThe first planned subproject will investigate spin-wave dynamics in in-plane magnetic multilayer systems. Here the focus will be on spin-wave generation from magnetic vortex cores and their subsequent injection into magnonic waveguides. At first, state-of-the-art magnetic materials already proven to work for vortex core based spin wave emission [1] will be used, while in a second step FeGd ferrimagnetic layers will be implemented, allowing for a variation of magnetic properties over a wide range of values .The second subproject will study the predicted emission of spin-waves from magnetic skyrmions, thereby transforming the concept of vortex core based spin wave generation to perpendicularly magnetized systems. In the first part, skyrmion based spin wave emission will be studied in state-of-the-art low damping cobalt-nickel perpendicularly magnetized multilayers, while in the second part the same experiments will be performed for FeGd samples with out-of-plane magnetic anisotropy. As a third part, the injection of such skyrmion generated forward-volume spin-waves into patterned magnonic waveguides will be investigated.A third subproject will links the two previously described subprojects by aiming at the transition from out-of-plane to in-plane magnetized system, which will be achieved by ion irradiation in case of the Co/Ni multilayers and temperature control in case of FeGd, respectively.This research will give important insights to the emerging field of magnonics, i.e. the use of spinwaves as information unit, information carriers and element for logic by manipulation spinwaves.For this research project we request financing of one PhD student salary for 4 years and one Postdoctoral fellow salary for two years. In addition we request funding for consumables, travel costs and open access publication charges.
-