Project

Back to overview

Mapping the internal structure of Mars

English title Mapping the internal structure of Mars
Applicant Giardini Domenico
Number 172508
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.06.2017 - 30.11.2021
Approved amount 659'107.00
Show all

All Disciplines (4)

Discipline
Geophysics
Other disciplines of Earth Sciences
Geochemistry
Mineralogy

Keywords (9)

Planetary Origin and Evolution ; Mars; Mantle composition and structure; Core composition and structure ; Mantle petrology and mineralogy; Interior structure ; Seismology; Geodesy; Geochemistry

Lay Summary (German)

Lead
Knowledge of the internal constitution of the planets is crucial to our understandingof the origin and evolution of our solar system. Major constraints can be placed on planetary accretion, differentiation, and mantle evolution from knowledge of bulk chemical composition. For Mars, an increasing amount of observations, both in situ and from laboratory analyses of Martian meteorites, in addition to models that bear on interior structure and evolution, have become available. These models and data have allowed us to refine our understanding of planetary processes from a Martian vantage point; yet much remains to be understood.
Lay summary

Mapping the internal structure of Mars

Inhalt und Ziel des Forschungsprojekts

Kenntnis des inneren Aufbaus der Planeten ist entscheidend für das Verständnis des 
Ursprungs und die Entwicklung unseres Sonnensystems. Die größten Einblicke in die 
physikalische Struktur der terrestrischen Planeten stammen von geophysikalischen Analysen 
und Seismologie insbesondere. Weil aber Seismologie und geophysikalische Disziplinen 
in der Regel nur ein indirektes Mittel zur Informationsbeschaffung über die 
Grundparameter wie Chemische Zusammensetzung sind, haben Methoden die die seismischen 
Modelle mit Ergebnissen und Daten aus Labormessungen einschließlich geochemischer 

Analysen von Mars meteoriten und primitiver Meteoriten kombinieren
erheblich an Bedeutung gewonnen.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

 

Eine grundlegende Frage in der heutigen Erdwissenschaft betrifft die Bausteine 
der Erdaehnlichen Planeten unseres Sonnensystems. Ein einmalige Moeglichkeit um diese 

Frage zu beantworten wird sich mit der Mars InSight (Interior Exploration using Seismic Investigations,
Geodesy and Heat Transport) Mission ergeben, die am 5. Mai 2018 gelaunched wird. 

InSight wird ein Seismometer, ein Geraet zur Messung des Waermeflusses und ein Geraet

zur genauen Messung der Rotation und Orientation von Mars auf den Planeten stellen.

InSight ist die Erste planetare Mission seit den Apollo Landungen auf dem Mond mit

einem Schwerpunkt auf Geophysikalische Messungen um die innere Strukture von Mars

besser zu beurteilen zu koennen. 

Direct link to Lay Summary Last update: 02.05.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
A spectral element approach to computing normal modes
Kemper J, van Driel M, Munch F, Khan A, Giardini D (2022), A spectral element approach to computing normal modes, in Geophysical Journal International, 229(2), 915-932.
The tidal–thermal evolution of the Pluto–Charon system
Bagheri Amirhossein, Khan Amir, Deschamps Frédéric, Samuel Henri, Kruglyakov Mikhail, Giardini Domenico (2022), The tidal–thermal evolution of the Pluto–Charon system, in Icarus, 376, 114871-114871.
Constraints on the interior structure of Phobos from tidal deformation modeling
Dmitrovskii Andrei A., Khan Amir, Boehm Christian, Bagheri Amirhossein, van Driel Martin (2022), Constraints on the interior structure of Phobos from tidal deformation modeling, in Icarus, 372, 114714-114714.
On the modelling of self-gravitation for full 3-D global seismic wave propagation
van Driel M, Kemper J, Boehm C (2021), On the modelling of self-gravitation for full 3-D global seismic wave propagation, in Geophysical Journal International, 227(1), 632-643.
Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor
Bagheri Amirhossein, Khan Amir, Efroimsky Michael, Kruglyakov Mikhail, Giardini Domenico (2021), Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor, in Nature Astronomy, 5(6), 539-543.
Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e
Renaud Joe P., Henning Wade G., Saxena Prabal, Neveu Marc, Bagheri Amirhossein, Mandell Avi, Hurford Terry (2021), Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e, in The Planetary Science Journal, 2(1), 4-4.
The seismicity of Mars
Giardini D., Lognonné P., Banerdt W. B., Pike W. T., Christensen U., Ceylan S., Clinton J. F., van Driel M., Stähler S. C., Böse M., Garcia R. F., Khan A., Panning M., Perrin C., Banfield D., Beucler E., Charalambous C., Euchner F., Horleston A., Jacob A., Kawamura T., Kedar S., Mainsant G., Scholz J.-R., et al. (2020), The seismicity of Mars, in Nature Geoscience, 13(3), 205-212.
Tidal Response of Mars Constrained From Laboratory‐Based Viscoelastic Dissipation Models and Geophysical Data
Bagheri A., Khan A., Al‐Attar D., Crawford O., Giardini D. (2019), Tidal Response of Mars Constrained From Laboratory‐Based Viscoelastic Dissipation Models and Geophysical Data, in Journal of Geophysical Research: Planets, 124(11), 2703-2727.
On the principal building blocks of Mars and Earth
Liebske Christian, Khan Amir (2019), On the principal building blocks of Mars and Earth, in Icarus, 322, 121-134.
Pre-mission InSights on the interior of Mars
SmrekarS. et al. (2019), Pre-mission InSights on the interior of Mars, in Space Science Reviews, 215:3.

Associated projects

Number Title Start Funding scheme
157133 Seismology on Mars 01.04.2015 Project funding
197366 Characterizing and understanding Enhanced Geothermal Systems (EGS) - novel tools and applications in a deep underground laboratory 01.04.2021 Project funding
197369 Towards a self-consistent Earth model from multi-scale joint inversion: Revealing Earth's mantle elasticity and density with seismic full-waveform inversion, tidal tomography and homogenization 01.01.2021 Project funding

Abstract

Knowledge of the internal constitution of the planets is crucial to our understandingof the origin and evolution of our solar system. Major constraints can be placed on planetary accretion, differentiation, and mantle evolution from knowledge of bulk chemical composition. For Mars, an increasing amount of observations, both in situ and from laboratory analyses of Martian meteorites, in addition to models that bear on interior structure and evolution, have become available. These models and data have allowed us to refine our understanding of planetary processes from a Martian vantage point; yet much remains to be understood.A unique opportunity will be provided by the upcoming Mars InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission, scheduled for launch in May 5, 2018. InSight will deploy a seismometer and a heat flow probe and conduct high-precision measurements of the rotation and orientation of Mars. InSight is the first planetary mission since the Apollo lunar landings dedicated to acquiring geophysical data from surface-installed instruments to explore internal structure and dynamics of a planet other than the Earth. To take full advantage of this circumstance, this project will implement an integrated approach that combines geophysical data analysis, thermodynamic computations, and viscoelastic modelling to constrain crustal structure, mantle composition and thermal state, in addition to core size and state of Mars. From this, novel insights on Mars' origin and evolution will be obtained that hold the potential of providing constraints on the formation of the terrestrial planets and, as a consequence, exoplanets.This project consists of three modules covering three interrelated topics that include seismology, visco-elasticity and rheology, and thermodynamic modeling with the following objectives: 1) to constrain interior structure using seismic data from InSight and to invert for thermo-chemical and rheological structure of Mars' mantle and core using geophysical data in combination with visco-elastic dissipation calculation and thermodynamic modeling; 2) to develop a thermodynamic model for the phase equilibria and physical properties of the Martian core.With the recent official approval (September 1, 2016) of the 2018 launch of the Mars InSight mission by NASA, this project is perfectly timed such that it overlaps with the schedule of the Mars InSight mission and is expected to initiate with a science preparation phase about 1 year in advance of deployment. This will enable us to build a dedicated group consisting of three graduate students spanning the required disciplines. The project assembles two research groups at ETH Zurich in a single integrated research team. Importantly, the timing ensures that the research team will be set up in time to test procedures and inversion schemes during the science preparation phase, so as to be fully operational when InSight lands on Mars November 26, 2018.Switzerland has a major role in the InSight mission. ETH Zurich delivers the acquisitionand control electronics for the seismometer and the Ebox containing the electronicsfor the whole mission, with support from the Swiss Space Office. ETH Zurich is also incharge of designing and operating the MarsQuake Service, a key ground-segment supportactivity providing accurate detection, location, and quantification of all recorded seismic events; the preparation and operation of the MarsQuake Service is partly supported by a SNF-ANR grant. This proposal will serve to support the science activities of the Swiss academic partners.
-