Project

Back to overview

Paraglacial Rock Slope Mechanics (Phase III)

English title Paraglacial Rock Slope Mechanics (Phase III)
Applicant Löw Simon
Number 172492
Funding scheme Project funding (Div. I-III)
Research institution Geologisches Institut ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Other disciplines of Earth Sciences
Start/End 01.04.2017 - 28.02.2022
Approved amount 809'687.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Earth Sciences
Hydrology, Limnology, Glaciology

Keywords (4)

Monitoring; Landslide; Rockslope; Glacier

Lay Summary (German)

Lead
In diesem mehrphasigen Forschungsprojekt geht es darum, die Interaktionen zwischen der Erosion sich ausbreitender Talgletscher, dem Rückzug von Talgletschern während Warmzeiten, und der Entwicklung grosser Hanginstabilitäten (Rutschungen, "Bergstürze") im Detail zu untersuchen. Die klassische Hypothese, welche basagt, dass nach dem Rückzug der Talgletscher weltweit viele grosse Massenbewegungen stattgefunden haben, wird aus physikalischer Sicht hinterfragt und mit einmaligen in-situ Messungen und Modellrechnungen untersucht.
Lay summary
Das primäre Untersuchungsgebiet dieses Projektes ist das Tal des Grossen Aletschgletschers, in welchem die Geschichte von Gletschervorstössen und -Rückzügen seit der letzten Eiszeit vor rund 18'000 Jahren sehr gut bekannt ist. Zudem finden sich im Bereich der heutigen Gletscherzunge mehrere aktive Hanginstabilitäten (Driest, Moosfluh), deren Bewegungsgeschichte insbesondere seit der Kleinen Eiszeit (1860) auch mit historischen und instrumentellen Daten sehr gut belegt ist. In der dritten Phase dieses Forschungsprojektes werden insbesondere die heute ablaufenden hydraulischen, mechanischen und thermischen Prozesse im Untergrund der rechten Talflanke mit Bohrungen und geophysikalischen Methoden im Detail untersucht.
Direct link to Lay Summary Last update: 30.05.2017

Responsible applicant and co-applicants

Employees

Project partner

Publications

Publication
From Toppling to Sliding: Progressive Evolution of the Moosfluh Landslide, Switzerland
Glueer Franziska, Loew Simon, Manconi Andrea, Aaron Jordan (2019), From Toppling to Sliding: Progressive Evolution of the Moosfluh Landslide, Switzerland, in Journal of Geophysical Research: Earth Surface, 124(12), 2899-2919.
Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland
Glueer Franziska, Loew Simon, Manconi Andrea (2019), Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland, in Geomorphology, 106677-106677.
Short Communication: Monitoring rockfalls with the Raspberry Shake
Manconi Andrea, Coviello Velio, Galletti Maud, Seifert Reto (2018), Short Communication: Monitoring rockfalls with the Raspberry Shake, in Earth Surface Dynamics, 6(4), 1219-1227.

Datasets

TPS Data Moosfluh 2013-2018: From toppling to sliding: progressive evolution of the Moosfluh Landslide

Author Glueer, Franziska
Publication date 15.08.2019
Persistent Identifier (PID) dc.identifier.doi 10.3929/ethz-b-000358779
Repository ETH Research Collection


Collaboration

Group / person Country
Types of collaboration
ETH Zurich, VAW Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
University Milano Bicocca Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
ETH Zurich, Geomatics Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
University of Fribourg Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
VAW Seminar Glaciology Individual talk Will the Moosfluh landslide ever fail catastrophically? 23.01.2020 ETH Zurich, Switzerland Glüer Franziska; Löw Simon;
Water Earth Systems PhD conference Talk given at a conference Patterns of reversible ground surface deformations in crystalline rock slopes 23.05.2019 Lausanne, Switzerland Glüer Franziska; Löw Simon; Hugentobler Marc; Oestreicher Nicolas;
17th Swiss Geoscience Meeting Talk given at a conference Monitoring and analysis of Landslide-Glacier Interactions (Great Aletsch Glacier, Switzerland) 21.05.2019 Fribourg, Switzerland Hugentobler Marc; Löw Simon;
EGU General Assembly 2019 Talk given at a conference The transition from toppling to sliding in deep rock slope instabilities. 07.04.2019 Vienna, Austria Löw Simon; Glüer Franziska;
EGU General Assembly 2019 Talk given at a conference Patterns of reversible ground surface deformations in crystalline rockslopes 07.04.2019 Vienna, Austria Oestreicher Nicolas; Löw Simon; Glüer Franziska; Hugentobler Marc;
EGU General Assembly 2019 Talk given at a conference Insights on rock mass disintegration at the Moosfluh slope, Switzerland 07.04.2019 Vienna, Austria Löw Simon; Glüer Franziska;
FIRST Center for Micro- and Nanoscience Individual talk Monitoring methods in landslide research: examples from Moosfluh, Switzerland 06.02.2019 ETH Zurich D-MATL, Switzerland Glüer Franziska; Löw Simon;
IAEG Congress Keynote Lecture Talk given at a conference Long and Short Term Response of Rock Slopes to Deglaciation (Great Aletsch Glacier, Switzerland) 15.10.2018 San Francisco, United States of America Hugentobler Marc; Löw Simon; Glüer Franziska; Oestreicher Nicolas;
EGU General Assembly 2018 Poster Configuration of a High-Resolution Paraglacial Borehole MonitoringSystem at the Great Aletsch Glacier 08.04.2018 Vienna, Austria Löw Simon; Hugentobler Marc;
ISRM Progressive Rock Failure Conference, Ascona, Switzerland. Talk given at a conference Paraglacial History and Structure of the Moosfluh Landslide (1880-2016). 10.11.2017 Ascona, Switzerland Glüer Franziska; Löw Simon;
15th Swiss Geoscience Meeting Talk given at a conference Kinematic Analysis of the September 2016 Moosfluh Landslide Acceleration. 15.09.2017 ?, Switzerland Glüer Franziska; Löw Simon;
EGU General Assembly 2017 Talk given at a conference Unravelling Detailed Kinematics of DSGSD Morphostructures (Moosfluh, Swiss Alps) 28.04.2017 Vienna, Austria Löw Simon; Glüer Franziska;
EGU General Assembly 2017 Talk given at a conference Monitoring the spatial and temporal evolution of slope instability with Digital Image Correlation 28.04.2017 Vienna, Austria Glüer Franziska; Löw Simon;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Klimawandel, Naturgefahren und Rückzug des Grossen Aletschgletschers Talk 13.09.2019 Zurich, Switzerland Glüer Franziska; Hugentobler Marc; Oestreicher Nicolas; Löw Simon;


Self-organised

Title Date Place
Moosfluh: Dramatische Reaktion einer grossen Hanginstabilität auf den Rückzug des Grossen Aletschgletschers seit der kleinen Eiszeit 10.09.2018 Riederalp, Switzerland
“Paraglacial slope instabilities”, Excursion Moosfluh within CAS ETH in applied earth sciences – Understanding landslide processes 10.09.2018 ETH Zurich and Riederalp, Switzerland
“Landslide Monitoring and research”, Field excursion and talks 03.08.2018 Riederalp, Switzerland

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Aletsch, laboratoire encombre, Une année après l’accélération des glissements de terrain engendrés p Le Temps Western Switzerland 2017
New media (web, blogs, podcasts, news feeds etc.) Les Failles d’Aletsch Le Temps Multimedia Western Switzerland 2017

Associated projects

Number Title Start Funding scheme
135184 Paraglacial Rock Slope Mechanics 01.06.2011 Project funding (Div. I-III)
135184 Paraglacial Rock Slope Mechanics 01.06.2011 Project funding (Div. I-III)
146593 Paraglacial Rock Slope Mechanics (Phase II) 01.10.2013 Project funding (Div. I-III)

Abstract

Repeated cycles of interglacial fluvial incision and glacial reoccupation in alpine valleys ensure valley walls in the bedrock landscape are constantly in a transitional state. Landforms in such regions are therefore commonly meta-stable, and as conditions such as glacial ice extent approach long-term limits, relatively minor changes in boundary conditions can elicit a strong response from the surrounding environment. In the case of rock slope instabilities in such environments, the nature of this response will vary with rock type and pre-existing fracture populations, folding and faulting, slope geometry, and local environmental conditions. Although rock slope failures provide the fastest and most dramatic evidence of a paraglacial response to deglaciation, large unknowns remain regarding underlying failure processes, key parameters, and the distribution of associated instabilities. This proposal represents the third phase of an ongoing investigation aimed at shedding light on the response of rock walls to repeated cycles of Quaternary glaciation and deglaciation. The Engineering Geology Group brings a wealth of experience regarding landslide analysis, rock mechanics and rock slope hydraulics, and focusses our attention specifically on complex interactions between valley glaciers, rock slopes, and the local Alpine environment. In two completed, and one ongoing PhD project, our long term research plan has considered time scales ranging from 1) Pleistocene glacial erosion and exfoliation fracturing in massive rocks, to 2) Late Glacial and Holocene rock slope response and long term cyclic THM rock mass damage, and finally 3) Recent and on-going THM rock slope response related to glacial retreat since the Little Ice Age. Results derived in the past 2 project phases were mainly based on detailed geological-geomorphological field mapping (including exfoliation and tectonic fracturing, landslide phenomena and kinematics), regional monitoring of displacements and environmental factors, and THM-coupled numerical modeling. The principal study area selected for this project is the UNESCO World Heritage region of the Great Aletsch glacier in the Central Alps.In the current proposal, which is Phase III of this multi-phase research project, we will collect new borehole, remote sensing and geophysical data in order to constrain key unknowns identified during Phase II of the project. This will allow us to verify critical relationships regarding 1) reversible deformations and irreversible rock slope damage resulting from long term hydraulic loading cycles, and 2) the detailed hydro-mechanical interactions between unstable slopes (landslides) and retreating glacier ice in the terminus area. These investigations require that we complement our existing surface monitoring systems (2 robotic Total Stations, 4 permanent GPS-Stations, temperature sensors , 2 climate stations) with subsurface monitoring systems, satellite and ground-based remote sensing and geophysical investigations. The backbone of the new subsurface investigations will be 6 destructive 40-70 m-deep boreholes in intact, damaged and unstable bedrock close to the current glacier surface, and the installation of high-precision deformation, temperature and pore pressure sensors in each hole. Time-series data relating to local displacements from borehole monitoring systems and Total Stations will be regionalized with displacements from DInSAR measurements. Locally recorded pore pressure variations will be complemented with repeat electrical resistivity measurements. Monitoring of displacements and mechanical conditions at glacier-landslide interfaces in the glacier tongue area (Moosfluh instability and secondary failures), will be complemented with new time-lapse photography, including structure-from-motion analyses and automated photogrammetric modeling.Data analysis and numerical modeling will build from our extensive previous experience of THM-coupled rock slope damage and displacement modeling in a paraglacial framework. In addition we will develop and apply new numerical models coupling glacier ice deformation, slope hydrogeology and landslide creep at the glacier-ice-contact.The project will lead to conclusive new results about the long- and short term physical interactions between stable rock slopes, landslides, temperate valley glaciers, climatic variations and groundwater conditions. This understanding will also enable sound assessments of the impacts of future climate warming and slope instabilities in previously glaciated Alpine valleys.
-