Project

Back to overview

EPISODE: Engineering of advanced hybrid Perovskite for Integration with Silicon photovoltaic Optoelectronic DEvices

Applicant Nazeeruddin Mohammad Khaja
Number 171000
Funding scheme Sinergia
Research institution Institut des sciences et ingénierie chimiques EPFL - SB - ISIC
Institution of higher education EPF Lausanne - EPFL
Main discipline Interdisciplinary
Start/End 01.06.2017 - 30.11.2021
Approved amount 2'029'464.00
Show all

All Disciplines (4)

Discipline
Interdisciplinary
Condensed Matter Physics
Other disciplines of Environmental Sciences
Physical Chemistry

Keywords (6)

Organic synthesis; Material Characterization; theoretical simulation; Perovskite solar cell; Device fabrication; Tandem Perovskite/Silicon solar cell

Lay Summary (French)

Lead
L'énergie solaire joue actuellement un rôle de première importance en tant que source d'énergie alternative pour un avenir durable. En 2050, l'énergie solaire couvrira jusqu'à 20% des besoins énergétiques de la planète, contribuant ainsi à réduire les émissions de CO2 et la consommation d’énergies fossiles. L’innovation et la recherche dans les nouvelles technologies et le développement de matériaux avancés sont indispensables pour réduire les coûts tout en maximisant la performance des systèmes photovoltaïques, deux étapes nécessaires en vue d’un déploiement massif de l’énergie photovoltaïque et pour permettre à cette dernière de prendre une place de premier plan dans le marché de l'énergie.
Lay summary

Contenu et objectifs du travail de recherche.

En 2012, un matériau aux propriétés étonnantes à base de cristaux pérovskites organiques-inorganiques d'iodure de plomb et de méthyle-ammonium a révolutionné la recherche dans le secteur du photovoltaïque. Grâce à leur excellente absorption de la lumière et à une haute mobilité des porteurs de charge, ces perovskites ont permis le développement de cellules solaires avec des rendements de plus de 22%, ce qui les rend très compétitives sur le marché. Ce projet a pour but de combiner cette nouvelle à celle bien connue du silicium cristallin et d’en faire des dispositifs dits tandem, en superposant une cellule à base de silicium cristallin et une cellule pérovskite, ceci de façon complètement intégrée. L'innovation réside dans le choix adéquat de la cellule pérovskite (optimisation des matériaux, de leur composition et leur énergie de gap) afin d’optimiser l'absorption dans la région spectrale complémentaire à celle du silicium. Grâce à la combinaison de ces deux cellules, une plus grande partie du spectre solaire sera ainsi transformée par la cellule, permettant ainsi des rendements plus élevés à un prix inférieur. Le développement technologique sera soutenu par une étude détaillée des propriétés chimiques, physiques et structurelles de ces matériaux avancés ainsi que des simulations.

 

Contexte scientifique et social du projet de recherche.

Ce projet s’inscrit dans le cadre de la «Stratégie Energétique 2050» suisse. Grâce au savoir-faire unique des partenaires du consortium constitué pour ce projet, celui-ci conduira à des innovations technologiques importantes pour le marché suisse en attirant l'intérêt des entreprises et des universités.

Direct link to Lay Summary Last update: 21.12.2016

Lay Summary (Italian)

Lead
L’energia solare riveste un ruolo primario tra le fonti energetiche alternative e coprirà, entro il 2050 fino al 20% del fabbisogno energetico mondiale. Tale sfida richiede lo sviluppo di nuove tecnologie efficienti, stabili e a basso costo.
Lay summary

Soggetto e Obiettivo.

Nel 2012 una nuova tecnologia a base di perovskite ibrida di ioduro di piombo e metilammonio ha rivoluzionato il fotovoltaico. Grazie alle loro proprietà eccezionali quali efficiente assorbimento e alta mobilità di carica, hanno raggiunto efficienze > 22%, rendendoli altamente competitivi sul mercato. Il progetto intende sviluppare una nuova tecnologia che combini le perovskiti al tradizionale fotovoltaico al silicio per aumentarne ulteriormente le prestazioni. L’obiettivo è lo sviluppo di una cella solare tandem, costituita da una sovrapposizione di celle in silicio e in perovskite. L’innovazione sta nell’ingegnerizzare ad hoc la cella a perovskite (ottimizzandone materiali, composizione, band gap) ottimizzando l’assorbimento nella regione spettrale del visibile, complementare a quella del silicio. Si riuscirà pertanto a coprire una porzione maggiore dello spettro solare, raggiungendo di conseguenza efficienze superiori a minor prezzo. Lo sviluppo tecnologico sarà supportato da uno studio fondamentale sulle proprieta chimiche, fisiche e strutturali dei materiali combinando avanzati studi sperimentali e teorici.

 

Contesto Scientifico.

Il progetto si inserisce nella promozione e ricerca di nuove risorse sostenibili, focus della “Strategia Energetica 2050” svizzera. Grazie al know-how del consorzio, il progetto porterà a innovazioni tecnologiche importanti per il mercato svizzero.

 

Direct link to Lay Summary Last update: 21.12.2016

Lay Summary (English)

Lead
Solar energy has a primary role among sustainable energy sources, covering, by 2050 up to 20% of the global energy demand, thus reducing global CO2 emissions and fossil energy consumption. This challenge asks for the development of new technologies being efficient, stable and low cost.
Lay summary

Objective.

In 2012, a new technology based on hybrid perovskite in the form of methylammonium lead iodide revolutionized the photovoltaic scene, with efficiency above 22%, comparable to Silicon. High absorption efficiency, high charge mobility and low non radiative recombination are few of the amazing properties of this material. EPISODE aims at realize a new hybrid technology combining the perovskite with the Silicon solar cells to further push the device performances. The goal is to develop a tandem solar cell overlapping the perovskite cell to the Silicon one. The central idea is to engineer the perovskite cell (optimizing materials, composition and energetics) optimizing its absorption in the visible region, complementary to the absorption window of Silicon cell. This will enable to harness photon over a larger spectral window, increasing the performances. The technological development will be supported by a fundamental study on the chemical, physical and structural properties of the device joining advanced experimental and theoretical methods.  

 

Scientific Context.

The project is collocated within the mission of the Swiss “Energy Strategy 2050”. Thanks to the know-how of the consortium EPISODE will lead to technological innovations, crucial for the Swiss energy market.

 

Direct link to Lay Summary Last update: 21.12.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Pushing the limit of Cs incorporation into FAPbBr 3 perovskite to enhance solar cells performances
Sutanto Albertus A., Queloz Valentin I. E., Garcia-Benito Inés, Laasonen Kari, Smit Berend, Nazeeruddin Mohammad Khaja, Syzgantseva Olga A., Grancini Giulia (2019), Pushing the limit of Cs incorporation into FAPbBr 3 perovskite to enhance solar cells performances, in APL Materials, 7(4), 041110-041110.

Collaboration

Group / person Country
Types of collaboration
Politecnico of Milano Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
EPFL SB ISIC LEPA Switzerland (Europe)
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
172929 Tailored Design and in-depth understanding of perovskite solar materials using in-house developed 3D/4D nanoscale ion-beam analysis 01.11.2017 Project funding

Abstract

The world global installed photovoltaic capacity will likely reach well over 1000 GW by 2030 and could reach up to 5’000 GW by 2050. At this moment solar will likely one of the major electricity source worldwide, with the lowest costs, while contributing to mitigating CO2 emissions. Using novel materials with higher potential performance and less energy intensive processing technologies could contribute to this paradigm change. In that context, solar cell based on organo-metal trihalide perovskites are one of the most promising photovoltaic (PV) technologies due to their impressive increase in initial power conversion efficiency (PCE) to currently 22.1% [1-3] in just over 6 years. This high efficiency is due to various excellent properties exhibited by the mixed organo-metal trihalide perovskites such as panchromatic absorption with very high molar extinction coefficient [4], long charge diffusion length [5], efficient charge transport and extraction [6]. These properties are linked to the crystal structure of the perovskite material, which can be tuned by adjusting composition as well as controlling nucleation and growth [7]. One of the most straightforward approaches to bring perovskite solar cells to the market lies in combining it with the market-leading silicon PV technology to form tandem solar cells with performance beyond the single-junction cell limit. Hybrid perovskite cells have been demonstrated to be highly attractive for such tandem applications as a result of their tunable band gap, high overall performance and negligible sub-bandgap absorption [4]. Here we propose to push this tandem concept further by designing novel perovskite materials and charge transporting materials with superior performances adapted to tandem integration with high-efficiency Si cells. To successfully target this ambitious goal we will 1) develop novel lead-free and stable perovskites based on non-toxic compounds with tunable absorption; 2) molecular engineer the active interfaces forming the stack by synthetizing ad hoc interfacial charge transfer layers with optimized energy level alignment and by controlling the interfacial processes therein; 3) engineer and optimize tandem structures integrating the novel perovskite materials with the high efficiency Si cell; 4) provide an in-depth fundamental understanding at different length scales, from material design to device properties, actually still missing. The approach will combine advanced materials characterization and modelling methods to guide the synthesis and provide a full understanding of the experimental findings. Within this framework, we propose a comprehensive interdisciplinary action plan based on five work packages interconnected in a holistic format. The strategy involves four partners with the unique and complementary know-how that will ensure a real breakthrough in material engineering and technological progression and a significant scientific advance in fundamental understanding. We expect that the interdisciplinary knowledge generated, which interconnects materials science, physics, chemistry, and engineering, will enable the development of a unified platform for the fabrication, comprehension and prediction of the key phenomena involved in novel hybrid semiconductors devices, eventually opening up many new concept.
-