Project

Back to overview

Aquisition of a state-of-the-art confocal laser scanning microscope for quantitative fluorescence studies in the area of biointerfaces science

Applicant Vörös Janos
Number 170763
Funding scheme R'EQUIP
Research institution Institut für Biomedizinische Technik Universität Zürich und ETHZ
Institution of higher education ETH Zurich - ETHZ
Main discipline Other disciplines of Engineering Sciences
Start/End 01.09.2017 - 31.08.2018
Approved amount 175'000.00
Show all

Keywords (6)

quantitative fluorescence; CLSM; 3D cell cultures; biointerface research; combined measurements; neural networks

Lay Summary (German)

Lead
This project is about the purchase of state-of-the-art Confocal Laser Scanning Microscope which is an indispensable tool for research at the interface between biological molecules and cells and opto-electronic devices. It will be used to investigate original scientific questions and address new technological challenges in the following areas:  - Fabrication of small neuron networks with defined topology;- Developing 3D microtissues for drug discovery and fundamental neurosciences;- 3D printing of cells;- Novel biosensing concepts for small sample analysis and cell culture monitoring.
Lay summary

Mithilfe der Features des modernen konfokalen Laserscan-Mikroskopes werden wir in der Lage sein, dreidimensionale Mikroskopiebilder von neuronalen Netzwerken auf Nitrocellulose („Papier-Neuronen“) und in Hydrogels zu erstellen, Experimente in Mikrotiterplatten durchzuführen und zweidimensionale Biomolekül- und Zell-Anordnungen quantitativ zu beurteilen.

Das neue System stellt eine ideale Platform dar für Experimente, in welchen einzigartige Tools in unserem Labor in einem System kombiniert werden (z.B. FluidFM und chemische Stimulation von Neuronen) und auf diese Weise sichern wir uns eine Intensivierung von Kollaborations-Projekten mit externen Nutzern unserer Systeme. Wir befinden uns im aktiven Austausch mit Professoren an schweizer Universitäten und mit mehreren schweizer Start-Up Firmen, mit welchen wir folgende Versuche mit dem neuen Instrument planen:

- Single-Cell Studien bezügl. mechanisch-induzierter Spaltung von Mitochondrien

- Entwicklung von 3D Mikrogewebe mit heterogenen Zelltypen für die Pharma-Forschung und Grundlagenforschung in der Biologie

- Entwicklung einer neuen Art von Biosensoren mit 2D und 3D Rezeptorenanordnung

Das neue CLSM System wird uns demnach nicht nur auf unserer Suche nach einem besseren Verständnis für die grundsätzliche Logik im Gehirn unterstützen, sondern auch mehrere Anwendungs-orientierte Projekte ermöglichen in den Bereichen Tissue Engineering, Bioelektronik und Biosensorik.

Direct link to Lay Summary Last update: 23.03.2017

Responsible applicant and co-applicants

Collaboration

Group / person Country
Types of collaboration
UC Davis United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Department of Biology, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Cytosurge Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
University Hospital Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Roche Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
Kyushu University Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel
Sharif University of Technology Iran (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
SPMonSPM Talk given at a conference Combining AFM and microfluidics and ionic current for versatile single-cell manipulation 20.08.2018 Leuven, Belgium Zambelli Tomaso;
11th FENS Forum of Neuroscience Poster Quantitative analysis of geometric axon guidance of microstructures for neural network engineering 11.08.2018 Berlin, Germany Vörös Janos;
FENS Forum of Neuroscience Poster Evaluating and predicting asymmetric microstructure induced, oriented connectivity in small neural networks using an axonal growth model. 07.07.2018 Berlin, Germany Vörös Janos;
11th FENS Forum of Neuroscience Poster Towards well-defined node-based topologies of directional neuronal circuits on multielectrode arrays. 07.07.2018 Berlin, Germany Vörös Janos;
11th FENS Forum of Neuroscience Poster Tracking Trajectories in Directional Neuronal Circuits on Multielectrode Arrays 07.07.2018 Berlin, Germany Vörös Janos;
MEA meeting Poster Quantitative investigation of geometrical axon guidance via PDMS microstructures for small-scale well-defined neural networks. 04.07.2018 Reutlingen, Germany Vörös Janos;
MEA MEETING Poster Axonal growth model in PDMS microstructures for in vitro neuro science applications. 04.07.2018 Reutlingen, Germany Vörös Janos;
MEA MEETING Poster Towards well-defined node-based topologies of functionally directional neuronal circuits on multielectrode arrays. 04.07.2018 Reutlingen, Germany Vörös Janos;
MaP Graduate Symposium Poster Well-defined small scale networks with directional connectivity 26.06.2018 Zurich, Switzerland Vörös Janos;
SPM-meeting of the Royal Microscopical Society Talk given at a conference FluidFM technology for 2D patterning, 3D printing, and single-cell biology 04.06.2018 Leeds, Great Britain and Northern Ireland Zambelli Tomaso;
Biophysical Society 62nd Annual Meeting Poster Towards the Investigation of Synaptic Vesicle Fusion Mechanisms with Novel Vesicular Force Microscopy 17.02.2018 San Francisco, United States of America Vörös Janos; Zambelli Tomaso;


Associated projects

Number Title Start Funding scheme
141825 NCCR MSE: Molecular Systems Engineering (phase I) 01.07.2014 National Centres of Competence in Research (NCCRs)
164023 State-of-the-art FluidFM: force-controlled nanoscale liquid manipulation system to interact with cells at their natural length-scale in 3D 01.01.2016 R'EQUIP
157182 New tools for building and modeling controled small neural networks 01.10.2014 Project funding
168932 Biointerfaces International Conference 2016 01.08.2016 Scientific Conferences

Abstract

The proposed state-of-the-art Confocal Laser Scanning Microscopy is an indispensable tool for research at the interface between biological molecules and cells and opto-electronic devices. In the recent years, we have carried out promising proof of principle experiments in a variety of topics and now we would like to acquire the proposed CLSM to investigate original scientific questions and address new technological challenges in the following areas: - Fabrication of small neuron networks with defined topology (SNF);- Developing 3D microtissues for drug discovery and fundamental neurosciences (CTI);- 3D printing of cells (CTI);- Novel biosensing concepts for small sample analysis and cell culture monitoring (ETH, Roche).Nonetheless, the corresponding daily experiments are currently hindered by the technical limita-tions of our present systems (e.g., unstable x-y positioning, lack of reliable autofocus and stitching routines, no z-compensation for illumination intensities).Therefore, we are asking for a state-of-the-art CLSM system with the following benefits:- Larger field of view thanks to drastically improved x-y stage stability, more reliable and flexi-ble automation, better stitching possibilities in the new software;- 5-10 times faster acquisition speed thanks to new scanners;- Possibility of long-term experiments due to more reliable and flexible automation, laser-guided autofocus and more stable illumination;- Higher quality of 3D images thanks to automated z compensation of illumination intensity, better deconvolution algorithms and new high NA, long-distance objectives Taking advantage of these improvements, we will be then e.g. able to image 3D paper-based neuron networks and hydrogel-embedded cells (thanks to z compensation); to perform experiments in microtiter plates (due to the better autofocus and enhanced speed); to characterize 2D biomolecule and cell patterns in a quantitative fashion (thanks to the more reliable automation, better image quality and stitching).The new system will provide an ideal platform for combined experiments with various unique tools available at LBB assuring intensification of collaboration with external users. We are in active contact with professors from ETH and Swiss universities and with Swiss start-up companies to perform novel experiments for:- Single cell biology to investigate mechanically induced fission in mitochondria;- Developing 3D microtissues of heterogeneous cell types towards drug discovery technology applications and fundamental biology;- Developing new biosensing modalities that use 2D or 3D patterns of receptors.
-