Project

Back to overview

Advanced electron beam lithographic tool for nanoscale electronic and photonic devices

English title Advanced electron beam lithographic tool for nanoscale electronic and photonic devices
Applicant Kippenberg Tobias Jan
Number 170750
Funding scheme R'EQUIP
Research institution Laboratoire de photonique et mesures quantiques EPFL - STI - IEL - LPQM2
Institution of higher education EPF Lausanne - EPFL
Main discipline Microelectronics. Optoelectronics
Start/End 01.12.2018 - 30.06.2021
Approved amount 800'000.00
Show all

Keywords (3)

nonlinear photonics; quantum optics; integrated photonic devices

Lay Summary (French)

Lead
Les fibres optiques sont le pilier de notre société de l’information. Les circuits photoniques intégrés sont utilisés dans beaucoup d’application, depuis les dispositifs passifs et les lasers jusqu’aux systèmes basés sur l’optique non-linéaires et quantique. Au LPQM, nous avons développé des microrésonateurs au Nitrure de Silicium permettant la génération de peignes de fréquences optiques utiles pour la métrologie ou la spectroscopie. Jusqu’à présent les pertes des guides d’ondes sont très supérieures aux fibres optiques. L’obtention de guides d’onde aux pertes très faibles implique une microstructuration par lithographie à l’échelle nanométrique qui doit être rapide pour atteindre des hautes densités de détails, ce que ne permet pas l’utilisation d’un système à faisceau d’électrons (EBL). En contraste, la lithographie UV (DUV stepper) permet une accélération du processus et une résolution nanométrique permettant la réalisation de guides aux pertes basses.
Lay summary

Les fibres optiques sont le pilier de notre société de l’information. Les circuits photoniques intégrés sont utilisés dans beaucoup d’application, depuis les dispositifs passifs et les lasers jusqu’aux systèmes basés sur l’optique non-linéaires et quantique. Au LPQM, nous avons développé des microrésonateurs au Nitrure de Silicium permettant la génération de peignes de fréquences optiques utiles pour la métrologie ou la spectroscopie. Jusqu’à présent les pertes des guides d’ondes sont très supérieures aux fibres optiques. L’obtention de guides d’onde aux pertes très faibles implique une microstructuration par lithographie à l’échelle nanométrique qui doit être rapide pour atteindre des hautes densités de détails, ce que ne permet pas l’utilisation d’un système à faisceau d’électrons (EBL). En contraste, la lithographie UV (DUV stepper) permet une accélération du processus et une résolution nanométrique permettant la réalisation de guides aux pertes basses.

Les pertes lors de la propagation de la lumière dans les guides d’onde sont dus à la rugosité des parois latérales du guide et aux défauts, provenant principalement du processus de lithographie. Avec le système de lithographie UV, nous pouvons espérer un contrôle de la lithographie au-dessous de 2nm. Actuellement notre laboratoire a démontré les guides d’ondes basé sur du Si3N4 aux plus basses pertes (1dB/m) et nous pourrions donc encore les réduire.

Le système de lithographie UV convient également aux activités de recherche liées au MEMS, NEMS, à la microélectronique ou au méta-matériaux. Ce sera le premier système de lithographie UV dans une université Suisse et renforcera les capacités technologiques du CMi et le statut de l’EPFL en tant qu’institut de recherche de haut niveau en nanofabrication et micro-ingénierie.

Direct link to Lay Summary Last update: 07.11.2018

Responsible applicant and co-applicants

Publications

Publication
High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits
Liu Junqiu, Huang Guanhao, Wang Rui Ning, He Jijun, Raja Arslan S., Liu Tianyi, Engelsen Nils J., Kippenberg Tobias J. (2021), High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits, in Nature Communications, 12(1), 2236-2236.
Emergent nonlinear phenomena in a driven dissipative photonic dimer
Tikan A., Riemensberger J., Komagata K., Hönl S., Churaev M., Skehan C., Guo H., Wang R. N., Liu J., Seidler P., Kippenberg T. J. (2021), Emergent nonlinear phenomena in a driven dissipative photonic dimer, in Nature Physics, 17(5), 604-610.
Difference-frequency generation in optically poled silicon nitride waveguides
Sahin Ezgi, Zabelich Boris, Yakar Ozan, Nitiss Edgars, Liu Junqiu, Wang Rui N., Kippenberg Tobias J., Brès Camille-Sophie (2021), Difference-frequency generation in optically poled silicon nitride waveguides, in Nanophotonics, 0(0), 1-8.
Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials
He Jijun, Paradisanos Ioannis, Liu Tianyi, Cadore Alisson R., Liu Junqiu, Churaev Mikhail, Wang Rui Ning, Raja Arslan S., Javerzac-Galy Clément, Roelli Philippe, Fazio Domenico De, Rosa Barbara L. T., Tongay Sefaattin, Soavi Giancarlo, Ferrari Andrea C., Kippenberg Tobias J. (2021), Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials, in Nano Letters, 21(7), 2709-2718.
https://arxiv.org/abs/2007.14507
AndersonMiles, LihachevGrigory, WengWenle, LiuJunqiu, KippenbergTobias, https://arxiv.org/abs/2007.14507.
Laser soliton microcombs on silicon
GuoJoel, ChangLin, Ning WangRui, Wenle Weng, PetersJonathan, XieWeiqiang, ZhangZeyu, RiemensbergerJohann, SelvidgeJennifer, KippenbergTobias, BowersJohn, Xiang Chao, Liu Jinqiu, Laser soliton microcombs on silicon.
Magnetic-free silicon nitride integrated optical isolator
Hao Tian, SiddharthAnat, Rui Ning Wang, BlésinTerence, HeJijun, KippenbergTobias, BhaveSunil, Magnetic-free silicon nitride integrated optical isolator, 1.
Symmetry protection of topological states in multimode photonic resonator chains
Tkin Alexey, TusninAleksandr, RiemensbergerJohann, ChuraevMikhail, KomagataKenichi, JiXinru, RiuNin Wang, LiuJinqiu, KippenbergTobias, Symmetry protection of topological states in multimode photonic resonator chains, arXiv, USA.
Ultralow-noise frequency-agile photonic integrated lasers
LihachevGrigorii, RiemensbergerJohann, WengWenle, LiuJinqiu, TianHao, SiddharthAnat, Viacheslav Snigirev, Ning WangRui, He Jijun, BhaveSunil, KippenbergTobias, Ultralow-noise frequency-agile photonic integrated lasers.

Datasets

High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits

Author Liu, Junqiu; Huang, Guanhao; Wang, Rui Ning; He, Jijun; Raja, Arslan S.; Liu, Tianyi; Engelsen, Nils J.; Kippenberg, Tobias J.
Publication date 16.12.2021
Persistent Identifier (PID) 10.5281/zenodo.4273990
Repository ZENODO
Abstract
Abstract Low-loss photonic integrated circuits and microresonators have enabled a wide range of applications, such as narrow-linewidth lasers and chip-scale frequency combs. To translate these into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in integrated Si 3 N 4 photonics have shown that ultralow-loss, dispersion-engineered microresonators with quality factors Q > 10 × 10 6 can be attained at die-level throughput. Yet, current fabrication techniques do not have sufficiently high yield and performance for existing and emerging applications, such as integrated travelling-wave parametric amplifiers that require meter-long photonic circuits. Here we demonstrate a fabrication technology that meets all requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 × 10 6 , corresponding to 1.0 dB m −1 optical loss, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances, and confirmed via cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB m −1 loss in dies of only 5 × 5 mm 2 size. Using a response measurement self-calibrated via the Kerr nonlinearity, we reveal that the intrinsic absorption-limited Q factor of our Si 3 N 4 microresonators can exceed 2 × 10 8 . This absorption loss is sufficiently low such that the Kerr nonlinearity dominates the microresonator’s response even in the audio frequency band. Transferring this Si 3 N 4 technology to commercial foundries can significantly improve the performance and capabilities of integrated photonics.

Emergent nonlinear phenomena in a driven dissipative photonic dimer

Author Tikan, A.; Riemensberger, J.; Komagata, K.; Hönl, S.; Churaev, M.; Skehan, C.; Guo, H.; Wang, R. N.; Liu, J.; Seidler, P.; Kippenberg, T. J.
Publication date 15.05.2021
Persistent Identifier (PID) 10.1038/s41567-020-01159-y
Repository ZENODO


Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials

Author He, Jijun; Paradisanos, Ioannis; Liu, Tianyi; Cadore, Alisson R.; Liu, Junqiu; Churaev, Mikhail; Wang, Rui Ning; Raja, Arslan S.; Javerzac-Galy, Clément; Roelli, Philippe; Fazio, Domenico De; Rosa, Barbara L. T.; Tongay, Sefaattin; Soavi, Giancarlo; Ferrari, Andrea C.; Kippenberg, Tobias J.
Publication date 14.04.2021
Persistent Identifier (PID) 10.1021/acs.nanolett.0c04149
Repository ZENODO


Collaboration

Group / person Country
Types of collaboration
Prof. B. Dayan - Weizmann Institute, Israel Israel (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. C. Koos - Karlsruhe Institute of Technology Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Dr. Steve Lecompte- Neuchatel, CSEM Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Vladan Vuletic – MIT United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
Purdue University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Andrea Ferrari - Cambridge University Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
University of California Santa Barbara (UCSB) United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Dr. Ronald Holzwarth - Menlo Systems GmbH Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
- Industry/business/other use-inspired collaboration

Awards

Title Year
R. W. Wood Prize 2021
ZEISS Research Award 2018

Associated projects

Number Title Start Funding scheme
163387 Cavity Quantum Optomechanics with Nanomechanical Oscillators 01.12.2015 Project funding
165933 Microresonators based Frequency combs: exploring temporal solitons 01.03.2017 Project funding
161573 Photonic Damascene Fabrication Process for High Q integrated SiN Photonic Circuits 01.04.2016 precoR
205378 Cryogenic RF Probe Station 01.08.2022 R'EQUIP

Abstract

Low loss optical fibers are the backbone of our information society. Ultralow-loss integrated photonic circuits are used in a wide range of applications ranging from passive devices, lasers, to nonlinear and quantum optical devices. Achieving low loss integrated waveguides requires in particular lithography patterning at the nanometer scale. Dense waveguide patterns require fast lithography process, thus direct writing such as electron beam lithography (EBL) is not practical, due to the low yield and high cost. This can be overcome with DUV (deep ultra-violet) stepper lithography - which offers a unique combination of nm sized features with fast processing. Taken together, DUV lithography is uniquely suited for the fabrication of photonic circuits with high yield, speed, free of stitching errors, with high reliability. DUV lithography is a widely used technology in industry for wafer scale batch processing, but has also unique merits for academic research at the leading edge. Although the present proposal targets integrated photonics, DUV steppers are equally suited for research in MEMS, NEMS, micro-electronics, or meta-materials.
-