Back to overview

An ultra-high resolution scanning electron microscope (SEM) for low-energy imaging and analysis

English title An ultra-high resolution scanning electron microscope (SEM) for low-energy imaging and analysis
Applicant Ekinci Yasin
Number 170743
Funding scheme R'EQUIP
Research institution Labor für Mikro- und Nanotechnologie Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.02.2017 - 30.09.2018
Approved amount 441'500.00
Show all

All Disciplines (3)

Condensed Matter Physics
Material Sciences
Microelectronics. Optoelectronics

Keywords (1)

Scanning electron microscopy

Lay Summary (German)

This project is about the acquisition of a new scanning electron microscope with high resolution.
Lay summary

Nanostrukturierte Materialien haben sich in Raffinesse und Komplexität signifikant entwickelt, wobei sie neue oder verbesserte Eigenschaften aufweisen, die sich aus ihrer geringen Größe ergeben. Ein Rasterelektronenmikroskop (SEM) ist ein hoch anpassungsfähiges und vielseitiges Werkzeug, das in der Wissenschaft für die Beobachtung und Charakterisierung von Materialien im Nanometerbereich weit verbreitet ist. Moderne SEMs können auch bei niedrigen Elektronenstrahlenenergien räumliche Auflösungen unter ein Nanometer bereitstellen, was insbesondere für die hochauflösende Abbildung von isolierenden oder empfindlichen Proben eine deutliche Verbesserung darstellt.

Die wissenschaftliche Motivation für dieses Projekt, ein hochmodernes SEM-Werkzeug für akkurate, schnelle, wiederholbare 200-Millimeter-Wafer-Skala Abbildungen und Metrologie von ultra-dichten Nanostrukturen zu erwerben. Viele laufende und zukünftige Projekte am Labor für Mikro- und Nanotechnologie (LMN) und in der Schweizer Lichtquelle (SLS) werden von diesem Tool profitieren. Der direkte Zugang zu einem solchen Werkzeug wird die Weiterentwicklung der Nanolithographie erleichtern, da es das Studium von Strukturen und physikalischen Effekten im Nanometerbereich ermöglicht und damit die wissenschaftliche Perspektive von LMN und PSI deutlich erweitert. Dazu gehören wissenschaftliche Forschungsprojekte auf extreme Ultraviolett-Interferenz-Lithographie, Nanokatalyse, die Untersuchung der mechanischen und elektronischen Eigenschaften von gespannten Halbleitern, Polymer Nanotechnologie, Analyse und Lösung von biologischen Proben Struktur, magnetisch Materialien und mikrofluidischen Vorrichtungen.

Direct link to Lay Summary Last update: 21.11.2016

Responsible applicant and co-applicants


Improving the resolution and throughput of achromatic Talbot lithography
Kazazis Dimitrios, Tseng Li-Ting, Ekinci Yasin (2018), Improving the resolution and throughput of achromatic Talbot lithography, in Journal of Vacuum Science & Technology B, 36(6), 06J501-06J501.

Associated projects

Number Title Start Funding scheme
159263 X-ray phase-contrast micro computed tomography for improved pathology 01.10.2015 Interdisciplinary projects
155917 Exploring Artificial Spin Systems in Space and Time 01.04.2015 Project funding
152553 Positive or negative? Selecting the charge state of ions during pulsed laser deposition of thin films 01.07.2014 Project funding
153578 Surface Chemistry at the Water-Oxide Nanoparticle Interface 01.12.2014 Project funding
159198 The search for low temperature super protonic conductivity 01.09.2015 Project funding
160186 Manipulating the magnetic properties of individual nanoparticles 01.12.2015 Project funding
153798 3.3kV SiC MOSFET and diodes for advanced power electronic systems 01.01.2015 NRP 70 Energy Turnaround
140750 Preferential CO oxidation on well-defined ceria nanoparticles promoted by Pt, Au and Cu: Deciphering the structure of reactive sites using in situ high-energy-resolution XAS / XES and infra-red spectroscopy 01.05.2013 Project funding
143969 Ultradense silicon nanowires 01.04.2013 Project funding
154472 Med-XPhase - Phase contrast X-ray imaging as a new diagnostic tool 01.01.2015 Sinergia


Nanoscale devices and nanostructured materials have significantly evolved in sophistication and complexity exhibiting novel or improved properties that result from their extremely small size. As we approach the single-digit nanometer resolution regime in the semiconductor industry for example, accurate imaging and characterization of these materials, structures, and devices is of fundamental importance. A scanning electron microscope (SEM) is a highly adaptable and versatile tool widely used in science for the observation and characterization of materials at the nanoscale. Modern SEMs can provide spatial resolutions below 1 nm, even at low electron-beam energies. This represents a significant improvement, in particular for imaging (at the highest resolution) insulating or delicate samples susceptible to charging or electron-beam damage.The scientific motivation of this proposal is driven by the need for accurate, fast, repeatable, 200 mm wafer-scale, ultra-high resolution imaging and metrology of ultra-dense nanostructures fabricated at the Laboratory for Micro- and Nanotechnology (LMN). These are patterned by extreme ultraviolet interference lithography (EUV-IL) at the XIL-II beamline in the Swiss Light Source (SLS), by state-of-the-art electron-beam lithography (EBL), by nanoimprint lithography, by 3D nanolithography or are chemically synthesized. LMN is the world leader in EUV-IL with a record sub-10 nm resolution of 6 nm half-pitch. The continuous downscaling of feature size achieved by the Advanced Lithography and Metrology (ALM) group of LMN, makes the use of a modern, high-end SEM imperative. In addition, several other groups of our laboratory, at PSI, and other Swiss institutions and spin-off companies are in need of increasing imaging resolution for their cutting-edge research in nanoscience and technology.Direct access to such a tool would not only facilitate the further development of single-digit resolution lithography, but in parallel, it would enable the study of structures and physical effects at the nanoscale, significantly broadening the scientific perspective of LMN and PSI. This includes scientific research projects on nanocatalysis, Si, Ge, and SiC semiconductor device fabrication and chemical analysis, the study of the mechanical and electronic properties of strained semiconductors, polymer nanotechnology, analysis and solution of biological samples structure, magnetic materials, and microfluidic devices, to name a few.The total required investment for a suitable SEM tool amounts to 941 kCHF, of which 50% (i.e. 470.5 kCHF) is requested from SNF, 25% (i.e. 235.25 kCHF) is already available from the PSI Forschungskomission, and 25% is covered by the PSI department/laboratory investment budget.