Back to overview

A new state-of-the-art Laser Ablation ICP-MS facility with emphasis on mapping and technique development

English title A new state-of-the-art Laser Ablation ICP-MS facility with emphasis on mapping and technique development
Applicant Rubatto Daniela
Number 170722
Funding scheme R'EQUIP
Research institution Institut für Geologie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Geochemistry
Start/End 01.01.2017 - 31.10.2018
Approved amount 263'650.00
Show all

All Disciplines (2)


Keywords (7)

diffusion; U-Pb geochronology; element mapping; Laser Ablation ICP-MS; trace elements; mineral microanalysis ; metamorphism

Lay Summary (German)

In-situ Messungen von Spurenelementkonzentrationen mit Hilfe von Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) ermöglicht, dass die meisten Elemente des Periodensystems mit einer Auflösung von wenigen Hunderstel Millimetern in wenigen Minuten gemessen werden können. Spurenelementsignaturen in Mineralien sind wie Fingerabdrücke von geologischen Prozessen, mit welchen man die Entstehung und Entwicklung der Erde rekonstruieren kann.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Verbesserungen in der räumlichen Auflösung von Laser-Ablation Geräten, eine höhere Empfindlichkeit der Massenspektrometer, sowie automatisierte Messungen erlauben neue Anwendungen in der Spurenelmentanalytik; das neue Gerät erweitert unsere LA-ICP-MS Infrastruktur. Insbesondere planen wir neue Protokolle zu entwickeln, um Spurenelementverteilungskarten von Mineralen zu erstellen. Weiterentwicklungen von Daten-Visualisationsprogrammen werden es erlauben, Variationen quantitativ zu erfassen und mit thermodynamischen Modellen zu verknüpfen. Metamorphe und magmatische Prozesse können so mit neuartigen Ansätzen studiert werden. Ein weiteres Ziel der Forschung sind die bessere Erfassung von Zeitskalen in geologischen Prozessen via U-Pb Datierungen sowie die Erkundung von Spurenelementdiffusion. Schliesslich soll der Ausbau der Spurenelementanalytik einen essentiellen Beitrag leisten für Forschungsprojekte anderer erdwissenschaftlicher Bereiche wie Tektonik, Sedimentologie und Planetologie.


Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Die neue Intrastruktur für Spurenelementanalytik soll massgeblich dazu beitragen, dass wir uns zu einem Kompetenzzentrum für die Geochemie von metamorphen Systemen entwickeln, welches internationale Anerkennung erreicht und rege Zusammenarbeit auf nationaler und internationaler Ebene ermöglicht. 

Direct link to Lay Summary Last update: 02.12.2016

Responsible applicant and co-applicants


Group / person Country
Types of collaboration
ETH Zurich, Institut für Geochemie und Petrologie Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Carbonate Sedimentology Group, Department of Geosciences, University of Fribourg Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
166280 Tracing the invisible path of fluids in the crust with microscale oxygen isotope measurements in key metamorphic minerals 01.04.2016 Project funding
178785 Fluids and new fluid tracers in water under-saturated continental crust: From rifting to tectonic inversion 01.09.2018 Project funding
157121 Element distribution and heavy stable isotope fractionation at the magmatic-hydrothermal transition 01.05.2015 Project funding


Laser Ablation Inductively-Coupled-Plasma Mass Spectrometry (LA-ICP-MS) has revolutionized Earth Sciences for in-situ microanalysis of trace elements and isotopes since its introduction in the late 80’s. The high textural control (spatial resolution), detection capabilities to single ng g-1 concentration levels and excellent analytical accuracy have made this instrument vital to modern Earth Sciences. Indeed, the introduction of LA-ICP-MS has stimulated the shift of geological sciences towards more quantitative and process-oriented studies. In this project we request a contribution for a new, state of the art LA-ICP-MS system encompassing a Resonetics LA unit and a quadrupole MS (QMS) unit. In the last few years there have been seminal new developments in commercially available instrumentation. Firstly, the Resonetics LA system offers unprecedented features, including a novel ablation cell technology and software-controlled motorized stage with µm precision that allow trace element mapping and profiling. Compositional images obtained from other techniques (e.g., back scattered electron, cathodoluminescence or electron microprobe major element maps) can be imported as guide to spot location, thus improving the accuracy of spatially controlled analyses on chemically complex samples. Secondly, new generation ICP-MS systems from diverse companies offer much improved detection capabilities for element concentration and isotope ratio measurements of transient signals from LA.We aim to develop and establish routine protocols for trace element mapping of minerals by combining these new analytical capabilities with the in-house developed software XMapTools that is linked to thermodynamic modeling. This will provide an innovative way of linking trace element systematics with metamorphic processes and establish an international node for quantitative trace element mapping in petrology and geochemistry. Another major goal is to develop protocols for the analysis of trace element diffusion profiles and to optimize in-situ U-Pb dating with automated applications also to provenance studies. The combined experience of the team coming from different groups of the Institute (geochemistry, fluid-rock interaction and petrology) with extensive expertise in micro-analysis including LA-ICP-MS, and a proven track record of publications, will create a strategic centre in the application of LA-ICP-MS to complex metamorphic systems. We will reach out within the University to make the facility available for research centering at the broad topics of “Matter and the Universe” as well as “Sustainability”, which have been individuated as major research directions of the University of Bern. The new facility will not only serve the University of Bern and the Swiss Earth Science community, but also international Geosciences, thereby helping to increase national and international visibility of analytical geochemistry, a discipline in which Switzerland has long been a world leader.