Project

Back to overview

Coupled multi-phase transport in porous layers for fuel cells utilizing evaporative cooling

English title Coupled multi-phase transport in porous layers for fuel cells utilizing evaporative cooling
Applicant Büchi Felix
Number 169913
Funding scheme Project funding
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Fluid Dynamics
Start/End 01.02.2017 - 31.01.2021
Approved amount 500'868.00
Show all

All Disciplines (2)

Discipline
Fluid Dynamics
Physical Chemistry

Keywords (4)

Evaporative cooling; Fuel cells ; X-ray Imaging; Multiscale multiphase modeling

Lay Summary (German)

Lead
Mehrphasen-Transport in den porösen Strukturen von Brennstoffzellen mit Verdampfungskühlung?Transport multi-phase dans les structures poreux des piles-à-combustibles refroidies par évaporationCoupled multi-phase transport in porous layers for fuel cells utilizing evaporative cooling Rund 40% der CO2-Emission in der Schweiz stammen heute aus dem Strassenverkehr. Elektrische Fahrzeuge, welche den Strom während der Fahrt mit Brennstoffzellen aus erneuerbarem Wasserstoff als Treibstoff produzieren, sind eine saubere Technologie mit Potenzial zur signifikanten Reduktion der CO2-Emission des Verkehrs. Auch wenn bereits Brennstoffzellen-Fahrzeuge in der Schweiz verkehren, so ist die Technologie jedoch für den verbreiteten Einsatz noch zu teuer. Kostenreduktion kann durch die Verwendung billigerer Materialien und Herstellungsprozesse, Erhöhung der Leistungsdichte, und durch die Vereinfachung der Brennstoffzellen-Systeme erreicht werden.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Unser übergeordnetes Ziel ist, zu einer Reduktion der Kosten von Brennstoffzellen für mobile Anwendungen beizutragen. In automobilen Brennstoffzellensystemen wird aus gasförmigen Wasserstoff und Luft der elektrische Strom zum Antrieb erzeugt. Die Betriebstemperatur der Zellen ist heute auf maximal 80 °C begrenzt und meistens wird eine aufwändige Befeuchtung der Prozessluft benötigt. Könnten die Zellen durch die direkte Verdampfung von Wasser gekühlt werden, so können einerseits die Komponenten zur Befeuchtung der Luft wegfallen und andererseits die Temperatur bis etwa 100 °C erhöht werden. Basierend auf einer Kombination von Experimenten (PSI) und numerischen Modellen (EPFL) erweitern wir das grundlegende Verständnis von Phasenübergangsvorgängen in den porösen Schichten, und optimieren darauf aufbauend die für die direkte Verdampfungskühlung benötigten porösen Strukturen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Arbeit wird neue und wichtige Erkenntnis zur Entwicklung der porösen Strukturen, welche für die Verdampfungskühlung in Brennstoffzellen benötigt werden, generieren. Die Ergebnisse werden die Entwicklung von Systemen mit höherer Betriebstemperatur und ohne Befeuchter für die Prozessluft ermöglichen. Damit sinken die Kosten der Brennstoffzellen-Technologie und unser Projekt leistet so einen Beitrag zur grösseren Verbreitung dieser nachhaltigeren Fahrzeuge. Die Erkenntnisse zum Phasenübergang in porösen Materialien werden darüber hinaus auch in vielen verwandten wissenschaftlichen Fragestellungen von Relevanz und anwendbar sein. 

Direct link to Lay Summary Last update: 20.10.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Numerical optimization of evaporative cooling in artificial gas diffusion layers
van Rooij Sarah, Magnini Mirco, Matar Omar K., Haussener Sophia (2021), Numerical optimization of evaporative cooling in artificial gas diffusion layers, in Applied Thermal Engineering, 186, 116460-116460.
Two-phase flow dynamics in a gas diffusion layer - gas channel - microporous layer system
Niblett Daniel, Mularczyk Adrian, Niasar Vahid, Eller Jens, Holmes Stuart (2020), Two-phase flow dynamics in a gas diffusion layer - gas channel - microporous layer system, in Journal of Power Sources, 471, 228427-228427.
Pore Network Modelling of Capillary Transport and Relative Diffusivity in Gas Diffusion Layers with Patterned Wettability
Tranter T. G., Boillat P., Mularczyk A., Manzi-Orezzoli V., Shearing P. R., Brett D. J. L., Eller J., Gostick J. T., Forner-Cuenca A. (2020), Pore Network Modelling of Capillary Transport and Relative Diffusivity in Gas Diffusion Layers with Patterned Wettability, in Journal of The Electrochemical Society, 167(11), 114512-114512.
Droplet and Percolation Network Interactions in a Fuel Cell Gas Diffusion Layer
Mularczyk Adrian, Lin Qingyang, Blunt Martin J., Lamibrac Adrien, Marone Federica, Schmidt Thomas J., Büchi Felix N., Eller Jens (2020), Droplet and Percolation Network Interactions in a Fuel Cell Gas Diffusion Layer, in Journal of The Electrochemical Society, 167(8), 084506-084506.
Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography
Manzi-Orezzoli Victoria, Mularczyk Adrian, Trtik Pavel, Halter Jonathan, Eller Jens, Schmidt Thomas J., Boillat Pierre (2019), Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography, in ACS Omega, 4(17), 17236-17243.
Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries
Greco Katharine V., Forner-Cuenca Antoni, Mularczyk Adrian, Eller Jens, Brushett Fikile R. (2018), Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries, in ACS Applied Materials & Interfaces, 10(51), 44430-44442.
Modeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells
Andersson M., Mularczyk A., Lamibrac A., Beale S.B., Eller J., Lehnert W., Büchi F.N. (2018), Modeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells, in Journal of Power Sources, 404, 159-171.

Collaboration

Group / person Country
Types of collaboration
Center of Computational Physics, ZHAW Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Integrated Multiscale Porous media RESearch (IMPRES) Group / University of Manchester Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Martin Blunt, Imperial College London Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Membrane Materials and Processes / TU Eindhoven Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
FLUTE Research Group Individual talk Numerical modeling of evaporative cooling in artificial gas diffusion layers 29.10.2020 Nottingham (online), Great Britain and Northern Ireland van Rooij Sarah; Haussener Sophia Eva Martha;
Interpore 2020 Talk given at a conference Evaporative cooling in fuel cells: Estimating effective conductivity in gas diffusion layers 30.08.2020 (Online), China van Rooij Sarah; Haussener Sophia Eva Martha;
Interpore2019 Talk given at a conference Convective Flow in Fuel Cell Gas Diffusion Layers and its Impact on Evaporation 06.05.2019 Valencia, Spain Mularczyk Adrian;
ModVal 16 Talk given at a conference A numerical multi-physics model of porous layers in fuel cells utilizing evaporative cooling 12.03.2019 Braunschweig, Germany Haussener Sophia Eva Martha; van Rooij Sarah;
ModVal 16 Poster How mass transport drives evaporation in gas diffusion layers of polymer electrolyte fuel cell 12.03.2019 Braunschweig,, Germany Mularczyk Adrian;
Physics of drying conference Talk given at a conference Effect of Heat Transfer Limitations on the in situ Study of Water Evaporation Rates in Fuel Cell Gas Diffusion Layers 05.11.2018 Marne la Vallée,, France Mularczyk Adrian;
69th Annual Meeting of the International Society of Electrochemistry Poster Water Evaporation Induced Temperature Distribution in Gas Diffusion Layers of Polymer Electrolyte Fuel Cells 02.09.2018 Bologna,, Italy Mularczyk Adrian;
ModVal 15 Talk given at a conference Convection driven droplet detachment from gas diffusion layers 12.04.2018 Aarau, Switzerland Mularczyk Adrian;
647. WE-Heraeus Seminar Poster Synchrotron based Characterization of Droplet Detachment from Gas Diffusion Layers 02.07.2017 Bad Honnef, Germany Mularczyk Adrian;
ModVal 14 Poster Fast XTM Imaging: Time Resolved Water Transport and Break-through in Gas Diffusion Layer 02.03.2017 Karlsruhe, Germany Mularczyk Adrian;


Associated projects

Number Title Start Funding scheme
180335 Pushing PEM Fuel Cells to Their Full Potential: Materials Development and Porous Layer Design Guided by Advanced Diagnostics 01.11.2018 Sinergia
153790 Designing multifunctional materials for proton exchange membrane fuel cells 01.10.2014 NRP 70 Energy Turnaround
172474 Porous materials with patterned wettability for advanced fuel cell water management strategies: improvement of durability and in situ performance 01.04.2017 Project funding
197268 Overcoming fluid transport limitations in gas fed CO2 reduction devices with bipolar membranes 01.06.2021 Project funding
143432 Synthesis and characterization of porous materials with patterned wettabillity for advanced fuel cell water management strategies 01.04.2013 Project funding
166064 Sub-second dynamics of liquid water transport in polymer electrolyte fuel cells revealed by 4D X-ray Tomographic Microscopy 01.11.2016 Project funding

Abstract

Electrification of road transport can contribute significantly to the reduction of the carbon intensity of the mobility sector. Polymer electrolyte fuel cells (PEFC) are a key driver for this transition. A technical limitation for highly efficient and high power density PEFC systems is the need for membrane humidification and consequently temperature stabilization at about 80 °C. Evaporative cooling based on a novel material concept can overcome this limitation and the aim of this project is to develop the necessary morphology and wettability patterns for the thereto required novel porous gas diffusion layer materials. We propose a combined experimental and modeling project, realized in 2 PhD theses hosted at PSI and EPFL. Conventional PEFC system approaches utilize a combination of heat exchanger for cooling and water recirculation loops for reactant gas humidification. The concept of evaporative cooling can reduce the complexity of such cooling/humidification approaches as it simultaneously provides a) the functionality of cell cooling and b) the humidification requirements in a single water recirculation stream, and at the same time c) permits for considerably higher cell temperature and d) offers the possibility to achieve homogeneous cell temperature and current density distribution. However, today’s existing PEFC evaporation cooling approaches limit system power density as they are bulky and/or introduce additional mass transport and efficiency losses. Evaporation of liquid water directly from the porous gas diffusion layer structures is an alternative, innovative approach for evaporative cooling introducing negligible additional mass transport losses and offering reduced system complexity. Recent developments at PSI allow to prepare porous gas diffusion media (GDL) with heterogeneous surface patterning for tailored water and gas transport. Utilizing these materials for evaporative cooling offers a large potential but requires basic understanding of the phase change process in the thin porous structures. Evaporation from porous media, though an important process in many disciplines from climatology to renewa-ble energy technology, remains an incompletely described process for thin porous materials such as GDLs. Our objectives are therefore to create a better generic understanding of the phase change in thin porous layers and to provide design guidelines for the appropriate morphology and wettability patterning of gas diffusion layers used in PEFC with evaporative cooling. To achieve this goal, we will follow a coupled experimental-numerical approach based on two complementary PhD theses bringing together the compe-tences of the project partners: i) characterizing the basic properties of water evaporation from the porous gas diffusion layer coupled to advanced X-ray imaging of the microstructure of the liquid water saturation, and measurement of PEFC performance with evaporative cooling and ii) coupled heat and mass transport model-ing in the complex, heterogeneous media for in-depth understanding of the multi-scale coupled phase change in the gas diffusion layer to propose suitable structures. The combined efforts will provide a large step towards the enhancement of the performance of PEFC and their competitive large-scale deployment.
-