Project

Back to overview

The structure, robustness, and functioning of the web of life

English title The structure, robustness, and functioning of the web of life
Applicant Bascompte Jordi
Number 169671
Funding scheme Project funding
Research institution Institut für Evolutionsbiologie und Umweltwissenschaften Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Ecology
Start/End 01.05.2017 - 31.10.2020
Approved amount 678'000.00
Show all

Keywords (3)

community ecology; ecological networks; theoretical ecology

Lay Summary (German)

Lead
Wechselwirkungen zwischen Arten bilden komplexe Netzwerke von Abhängigkeiten wie jene zwischen blühenden Pflanzen und ihren Insektenbestäubern. Verstehen, wie diese Netzwerke und die von ihnen bereitgestellten Dienstleistungen auf globale Umweltveränderungen reagieren, ist das Ziel dieses Projekts.
Lay summary

2. Ziele des Forschungsvorhabens:

Die globale Veränderung wurde vor allem auf der Ebene der einzelnen Arten untersucht. So haben wir in den vergangenen Jahren gelernt, dass anthropogene Einflüsse die Fülle, Physiologie und das geografische Spektrum beeinflussen können. In jüngster Zeit haben Beweise auf die Tatsache hingewiesen, dass die globale Umweltveränderung auch die Wechselwirkungen der Arten beeinflussen kann. Weil diese Interaktionen dazu neigen, eine große Anzahl von Arten zu verknüpfen, die komplexe Netzwerke von Interdependenzen prägen, ist eine wichtige Frage, wie robust diese Netzwerke für den globalen Wandel sind. In diesem Projekt kombinieren wir Metaanalysen und experimentelle Ansätze, um zu zeigen, wie klimatisch induzierte Extinktionswahrscheinlichkeiten Koextinierungskaskaden auslösen können, die funktionale Vielfalt, evolutionäre Geschichte und Ökosystemdienstleistungen wie die Bestäubung beschneiden können.

3. Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts:

Dieses Forschungsprojekt entsteht aus der wachsenden Erkenntnis, dass wir die Robustheit des Netz des Lebens angesichts der globalen Umweltveränderung verstehen müssen. Wie ganze Bevölkerungsgruppen und deren angebotenen Dienste auf solche anthropogenen Einflüsse reagieren, kann unser Wohlergehen in diesem stark umgesetzten Planeten weitgehend beeinflussen.


Direct link to Lay Summary Last update: 11.05.2017

Lay Summary (English)

Lead
Interactions between species shape complex networks of dependencies such as those between flowering plants and their insect pollinators. Understanding how these networks and the services they provide will respond to global environmental change is the goal of this project.
Lay summary

2. Aims of the research project:

Global change has been mainly studied at the level of individual species.  Thus, in the past few years we have learnt that anthropogenic influences may affect the abundance, physiology, and geographic range of species.  More recently, evidence has pointed out to the fact that global environmental change may also affect species interactions.  Because these interactions tend to involve a large number of species shaping complex networks of interdependencies, one important question is how robust these networks will be to global change.  In this project, we combine meta-analyses and an experimental approaches to shed light on how climatically induced extinction probabilities may trigger coextinction cascades that may prune functional diversity, evolutionary history, and ecosystem services such as pollination. 

3. Scientific and societal context of the research project:

This research project is born from the growing realization that we have to understand the robustness of the Web of Life in the face of global environmental change.  How entire communities and the services they provide will respond to such anthropogenic influences may to a large extent affect our well being in this highly transformed planet. 

Direct link to Lay Summary Last update: 11.05.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Genetic correlations and ecological networks shape coevolving mutualisms
Assis Ana Paula A., Thompson John N., Santana Pamela Cristina, Jordano Pedro, Bascompte Jordi, Guimarães Paulo R. (2020), Genetic correlations and ecological networks shape coevolving mutualisms, in Ecology Letters, ele.13605-ele.13605.
Partner Fidelity and Asymmetric Specialization in Ecological Networks
Fortuna Miguel A., Nagavci Arxhina, Barbour Matthew A., Bascompte Jordi (2020), Partner Fidelity and Asymmetric Specialization in Ecological Networks, in The American Naturalist, 196(3), 382-389.
Loss of consumers constrains phenotypic evolution in the resulting food web
Barbour Matthew A., Greyson‐Gaito Christopher J., Sotoodeh Arezoo, Locke Brendan, Bascompte Jordi (2020), Loss of consumers constrains phenotypic evolution in the resulting food web, in Evolution Letters, 4(3), 266-277.
Measuring Coevolutionary Dynamics in Species-Rich Communities
Hall Alex R., Ashby Ben, Bascompte Jordi, King Kayla C. (2020), Measuring Coevolutionary Dynamics in Species-Rich Communities, in Trends in Ecology & Evolution, (2656), 1-12.
A structural theory of mutualistic networks
BascompteJordi, FerreraAntonio (2020), A structural theory of mutualistic networks, in Gellner Gabriel, McCann Kevin (ed.), Oxford University Press, Oxford, UK, 93-115.
Invariance in ecological pattern
Frank Steven A., Bascompte Jordi (2019), Invariance in ecological pattern, in F1000Research, 8, 2093-2093.
Foreseeing the future of mutualistic communities beyond collapse
Lever J. Jelle, de Leemput Ingrid A., Weinans Els, Quax Rick, Dakos Vasilis, Nes Egbert H., Bascompte Jordi, Scheffer Marten (2019), Foreseeing the future of mutualistic communities beyond collapse, in Ecology Letters, 23(1), 2-15.
The Impact of Mutualisms on Species Richness
Chomicki Guillaume, Weber Marjorie, Antonelli Alexandre, Bascompte Jordi, Kiers E. Toby (2019), The Impact of Mutualisms on Species Richness, in Trends in Ecology & Evolution, 34(8), 698-711.
Mutualism and biodiversity
Bascompte Jordi (2019), Mutualism and biodiversity, in Current Biology, 29(11), R467-R470.
Nestedness in complex networks: Observation, emergence, and implications
Mariani Manuel Sebastian, Ren Zhuo-Ming, Bascompte Jordi, Tessone Claudio Juan (2019), Nestedness in complex networks: Observation, emergence, and implications, in Physics Reports, 813, 1-90.
Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life
Bascompte Jordi, García María B., Ortega Raúl, Rezende Enrico L., Pironon Samuel (2019), Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life, in Science Advances, 5(5), eaav2539-eaav2539.
Indigenous knowledge networks in the face of global change
Cámara-Leret Rodrigo, Fortuna Miguel A., Bascompte Jordi (2019), Indigenous knowledge networks in the face of global change, in Proceedings of the National Academy of Sciences, 116(20), 9913-9918.
Coevolutionary dynamics shape the structure of bacteria‐phage infection networks
Fortuna Miguel A., Barbour Matthew A., Zaman Luis, Hall Alex R., Buckling Angus, Bascompte Jordi (2019), Coevolutionary dynamics shape the structure of bacteria‐phage infection networks, in Evolution, 73(5), 1001-1011.
Plant interactions shape pollination networks via nonadditive effects
Losapio Gianalberto, Fortuna Miguel A., Bascompte Jordi, Schmid Bernhard, Michalet Richard, Neumeyer Rainer, Castro Leopoldo, Cerretti Pierfilippo, Germann Christoph, Haenni Jean-Paul, Klopfstein Seraina, Ortiz-Sanchez Francisco Javier, Pont Adrian C., Rousse Pascal, Schmid Jürg, Sommaggio Daniele, Schöb Christian (2019), Plant interactions shape pollination networks via nonadditive effects, in Ecology, 100(3), e02619-e02619.
Thresholds in the resilience of modular social networks to invasion by defectors
Wechsler Daniel, Bascompte Jordi (2019), Thresholds in the resilience of modular social networks to invasion by defectors, in Journal of Theoretical Biology, 460, 56-63.
Comparing species interaction networks along environmental gradientsNetworks along environmental gradients
Pellissier Loïc, Albouy Camille, Bascompte Jordi, Farwig Nina, Graham Catherine, Loreau Michel, Maglianesi Maria Alejandra, Melián Carlos J., Pitteloud Camille, Roslin Tomas, Rohr Rudolf, Saavedra Serguei, Thuiller Wilfried, Woodward Guy, Zimmermann Niklaus E., Gravel Dominique (2018), Comparing species interaction networks along environmental gradientsNetworks along environmental gradients, in Biological Reviews, 93(2), 785-800.
Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms
Fortuna Miguel A., Zaman Luis, Wagner Andreas, Bascompte Jordi (2017), Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms, in Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1735), 20160431-20160431.
Indirect effects drive coevolution in mutualistic networks
Guimarães Paulo R., Pires Mathias M., Jordano Pedro, Bascompte Jordi, Thompson John N. (2017), Indirect effects drive coevolution in mutualistic networks, in Nature, 550(7677), 511-514.

Collaboration

Group / person Country
Types of collaboration
Prof. Jason Tylianakis/University of Canterbury New Zealand (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. María B. García/Instituto Pirenaico de Ecología, CSIC, Zaragoza Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Florian Schiestl/the Institute for Systematic Botany, UZH Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Marten Scheffer/Wageningen University Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Associated projects

Number Title Start Funding scheme
197201 Coevolution and indirect effects in ecological communities 01.11.2020 Project funding
200184 Biotinkering for Youth 01.04.2021 Agora

Abstract

If the tree of life represents the notion by which all organisms are linked by common descent, the web of life describes a picture by which species are linked through a network of mutual dependencies such as the ones between plants and their pollinators. Recent work has described the architecture of ecological networks and has determined its relevance for network robustness. Yet, this work has been eminently theoretical. Thus, we still know little about the implications of network architecture for ecosystem services and how these services will collapse as the ecological networks disassemble in the face of global environmental change. In this proposal, I intend to move forward the network research by relating it to current studies of climate change, by adding ecosystem services such as pollination and biological control, and by experimentally testing some of the theoretical predictions about the role of network architecture. My strategy to achieve this goal is through an interdisciplinary approach that combines theory, meta-analysis, and experiment. Because network structure may have a genetic basis, I also aim at experimentally addressing the relationship between genetic diversity and network complexity. This may pave the road to understanding the role of natural selection in controlling the robustness of the web of life.
-