Project

Back to overview

Modelling settling-driven gravitational instabilities from volcanic clouds

English title Modelling settling-driven gravitational instabilities from volcanic clouds
Applicant Bonadonna Costanza
Number 169463
Funding scheme Project funding
Research institution Département des sciences de la Terre Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Other disciplines of Earth Sciences
Start/End 01.09.2017 - 30.11.2021
Approved amount 633'849.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Earth Sciences
Geophysics

Keywords (7)

Lattice Boltzmann; modelling; volcanic ash ; volcanic plumes; tephra deposits; laboratory experiments; ash sedimentation

Lay Summary (Italian)

Lead
Con questo progetto proponiamo una ricerca multidisciplinare che attraverso studi numerici, di terreno e di laboratorio possa migliorare la comprensione, la descrizione e la modellizzazione delle instabilità gravitazionali che si formano alla base delle nubi vulcaniche e che controllano la sedimentazione della cenere fine. Come dimostrato da recenti crisi vulcaniche (si ricordi ad esempio la crisi del vulcano Eyjafjallajokull, Islanda, 2010), la dispersione nell’atmosfera e l’accumulo a terra di cenere vulcanica possono avere un grande impatto sia a scala locale (come ad esempio l’impatto sulle infrastrutture e sulla salute) che a scala globale (come ad esempio l’impatto sul traffico aereo) paralizzando interi settori economici (come il commercio e l’agricoltura). La mitigazione di questi impatti può avvenire solo tramite un’accurata descrizione di tutti quei processi che controllano la dispersione e sedimentazione della cenere vulcanica, come appunto le instabilità gravitazionali.
Lay summary

Soggetto e obiettivo

Il nostro obiettivo principale è la comprensione e la descrizione numerica della sedimentazione della cenere vulcanica fine attraverso lo sviluppo di instabilità gravitazionali alla base di nubi vulcaniche. Queste instabilità, che appaiono simili alle bande di pioggia verticali che si vedono spesso alla base di nubi meteorologiche, si possono formare alla base di nubi vulcaniche per piccole differenze di densità e favoriscono la sedimentazione di cenere fine. Questo comporta un maggiore accumulo di cenere fine a terra in zone vicino al vulcano e una minore concentrazione in atmosfera in zone distali, compromettendo la previsione numerica di dispersione di cenere fine che non tiene conto di questo fenomeno. Le osservazioni in tempo reale di queste instabilità durante eruzioni vulcaniche (il nostro caso studio è l’Etna in Italia) e la loro riproduzione in laboratorio che sono oggetto di questo progetto ci consentiranno di sviluppare una migliore comprensione di questo fenomeno. Le osservazioni di terreno e di laboratorio saranno anche accompagnate da studi numerici 3D che permetteranno un’analisi più approfondita delle condizioni che possono generare questo fenomeno.

Contesto socio-scientifico

La mancanza di una descrizione accurata della dispersione e sedimentazione della cenere fine rappresenta uno dei problemi principali delle attuali previsioni numeriche utilizzate sia durante le crisi vulcaniche per la mitigazione del rischio al trasporto aereo che per la pianificazione del territorio a lungo termine. Il nostro lavoro permetterà di migliorare la descrizione numerica della dispersione di cenere fine nell’atmosfera e del suo accumulo a terra per poter migliorare l’accuratezza dei modelli numerici utilizzati per mitigare i rischi vulcanici sia a terra che in atmosfera.

Direct link to Lay Summary Last update: 25.06.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Modelling Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds Using the Lattice Boltzmann Method
Lemus Jonathan, Fries Allan, Jarvis Paul A., Bonadonna Costanza, Chopard Bastien, Lätt Jonas (2021), Modelling Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds Using the Lattice Boltzmann Method, in Frontiers in Earth Science, 9, 713175.
The Influence of Particle Concentration on the Formation of Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds
Fries Allan, Lemus Jonathan, Jarvis Paul A., Clarke Amanda B., Phillips Jeremy C., Manzella Irene, Bonadonna Costanza (2021), The Influence of Particle Concentration on the Formation of Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds, in Frontiers in Earth Science, 9, 640090.
Palabos: Parallel Lattice Boltzmann Solver
Latt Jonas, Malaspinas Orestis, Kontaxakis Dimitrios, Parmigiani Andrea, Lagrava Daniel, Brogi Federico, Belgacem Mohamed Ben, Thorimbert Yann, Leclaire Sébastien, Li Sha, Marson Francesco, Lemus Jonathan, Kotsalos Christos, Conradin Raphaël, Coreixas Christophe, Petkantchin Rémy, Raynaud Franck, Beny Joël, Chopard Bastien (2021), Palabos: Parallel Lattice Boltzmann Solver, in Computers & Mathematics with Applications, 81, 334-350.

Collaboration

Group / person Country
Types of collaboration
Prof Jeremy Phillips: University of Bristol Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr Simona Scollo: Italian National Institute for Geophysics and Volcanology - INGV Catania Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr Jonas Latt: Computer Science Department, University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr Paul Jarvis: University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof Amanda Clarke: School of Earth and Space Exploration (Arizona State University) United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
American Geophysical Union General Assembly Talk given at a conference Combining visible- and infrared-wavelength observations with numerical modelling to describe Vulcanian eruption plumes at Sabancaya, Peru 17.12.2021 ZOOM, United States of America Bonadonna Costanza;
Blowing South: Southern Hemisphere Dust Symposium Talk given at a conference Aeolian remobilisation of volcanic ash at Sabancaya volcano (Peru) 09.11.2021 ZOOM, Argentina Fries Allan; Bonadonna Costanza;
First Symposium on the Central Volcanic Zone of the Andes Talk given at a conference Aeolian remobilisation of volcanic ash at Sabancaya volcano (Peru) 30.06.2021 ZOOM, Peru Fries Allan; Bonadonna Costanza;
Palabos summer school Talk given at a conference Advection-diffusion with sharp interfaces, coupled with a fluid 08.07.2020 Geneve, Switzerland Lemus Jonathan; Chopard Bastien;
American Geophysical Union General Assembly Talk given at a conference Interplay Between Shear at the Base of Volcanic Clouds and Ash Sedimentation 12.12.2019 San Francisco, United States of America Manzella Irene; Fries Allan; Lemus Jonathan; Bonadonna Costanza;
American Geophysical Union General Assembly Poster Numerical Modelling of Gravitational Instabilities at the Base of Volcanic Plumes 12.12.2019 San Francisco, United States of America Lemus Jonathan; Chopard Bastien; Bonadonna Costanza; Fries Allan;
American Geophysical Union General Assembly Poster Experiments on the Effect of Particle Concentration and Size on Settling-Driven Gravitational Instabilities Associated with Volcanic Clouds 12.12.2019 San Francisco, United States of America Manzella Irene; Bonadonna Costanza; Fries Allan; Lemus Jonathan;
Computer Science Day Talk given at a conference Modélisation d’instabilités convectives à la base de panaches volcaniques 06.12.2019 Carouge, Switzerland Chopard Bastien; Lemus Jonathan; Fries Allan; Bonadonna Costanza;
Doctoral Program in Mineral Sciences Fall Day Talk given at a conference Modelling Gravitational Instabilities at the Base of Volcanic Clouds 11.10.2019 Fribourg, Switzerland Lemus Jonathan; Fries Allan; Bonadonna Costanza; Chopard Bastien;
Doctoral Program in Mineral Sciences Fall Day Talk given at a conference Gravitational instabilities at the base of volcanic clouds 11.10.2019 Fribourg, Switzerland Fries Allan; Lemus Jonathan; Manzella Irene; Bonadonna Costanza;
4th Internation Training School on "Convective and volcanic clouds detection, monitoring and modeling" Poster Experiments on gravitational instabilities at the base of volcanic clouds 28.09.2018 Catania, Italy Fries Allan; Bonadonna Costanza; Lemus Jonathan; Manzella Irene;
4th Internation Training School on "Convective and volcanic clouds detection, monitoring and modeling" Poster Modelling gravitational instabilities at the base of volcanic clouds 28.09.2018 Catania, Italy Fries Allan; Lemus Jonathan; Bonadonna Costanza; Chopard Bastien;


Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions (R)amène ta science !, Geneva, Switzerland Western Switzerland 2019
Talks/events/exhibitions Nuit des musées, Geneva, Switzerland Western Switzerland 2019
Talks/events/exhibitions Nuit de la Science, Geneva, Switzerland Western Switzerland 2018
Talks/events/exhibitions Terrascope, Sciencescope, Geneva, Switzerland Western Switzerland 2018

Associated projects

Number Title Start Funding scheme
137942 Combining geophysical observations and numerical modelling for an improved prediction of volcanic ash dispersal 01.02.2012 Project funding
163152 A new integrative multi-hazard volcanic risk assessment combining multi-temporal and multi-spatial scales 01.11.2015 Project funding
125024 Numerical, experimental and field investigations of particle aggregation 01.08.2009 Project funding
116335 Characterization of the dynamics and the products of basaltic explosive volcanism 01.07.2007 Project funding
156255 Experimental and field investigations of particle aggregation 01.06.2015 Project funding

Abstract

This new research project will fund two PhD students (subprojects A and B) and builds on the consolidated collaboration between the Group of Physical Volcanology and Geological Risk of Prof. Bonadonna and the Scientific and Parallel Computing Group of Prof. Chopard of the University of Geneva to further improve our understanding of particle sedimentation from volcanic plumes and the forecasting of ash dispersal. Motivation: Dispersal and sedimentation of volcanic ash pose numerous hazards at both local and global scale, including damage to infrastructure, pollution of the ecosystem and paralysis of entire economic and transport sectors. Even though Volcanic Ash Transport and Dispersal Models (VATDMs) have now reached a high level of sophistication, an accurate and comprehensive parameterization of size-selective sedimentation processes (i.e. particle aggregation and gravitational instabilities) does not exist. Nonetheless, various examples of empirical parameterization of particle aggregation have recently improved specific hazard assessments, while gravitational instabilities from volcanic clouds are far from being understood and quantitatively described. In particular, given that both size-selective processes affect the same size population (i.e. fine ash) in a similar manner (i.e. increasing the settling velocity), the associated effects might be often misinterpreted and wrongly described. These misconceptions have important implications for long-term hazard assessment of tephra sedimentation, real-time forecasting of ash-rich plumes and health-hazard assessments.Goal and specific objectives: With this new project we plan to develop a comprehensive parameterization for gravitational instabilities that can be implemented in VATDMs, both for real-time forecasting and long-term planning. Specific objectives include: 1) the characterization of gravitational instabilities based on field observations (subpr. A), scaled laboratory experiments (subpr. A) and 3D numerical modelling (subpr. B) in order to improve our fundamental understanding of this size-selective sedimentation process and quantification of its dynamics; 2) the study of the role of gravitational instabilities on particle aggregation based on field, experimental and numerical investigations (both subprojects); 3) the implementation of the new parameterization of gravitational instabilities within an existing hybrid Eulerian-Lagrangian model for tephra dispersal (subpr. B). Methods: Field observations, scaled laboratory experiments and dedicated 3D numerical modeling will be combined in order to develop a comprehensive and versatile parameterization of gravitational instabilities that can be implemented in VATDMs. In particular, a new recirculating tank for the study of plumes in cross-flow will be built at the University of Geneva and both field and laboratory experiments will benefit from the use of sophisticated and state-of-the-art measuring strategies (e.g. LiDAR, ASHERs, PIV/PLIF). A dedicated 3D Lattice Boltzmann numerical model will also be developed based on both field and experimental constraints and will be used to explore a wide range of initial conditions. Given the high frequency of eruptions and occurrence of gravitational instabilities, field observations will be carried out at Etna volcano (Italy).Scientific relevance and broader impact: The success of this project relies on the synergy amongst international experts in field characterization, experimental investigations and numerical modeling of volcanic processes and will help shed some light on a currently neglected size-selective sedimentation process, i.e. gravitational instabilities. The main goal of this project is in line with the main research priorities identified during the first two IUGG-WMO workshops on Ash Dispersal Forecast and Civil Aviation (2010-2013), i.e. better quantitative description of fine-ash dispersal. Results of the project will also be shared with operational agencies involved in real-time forecasting of volcanic clouds during volcanic crises (e.g., Italian National Institute for Geophysics and Volcanology - INGV, Volcanic Ash Advisory Centers - VAACs).
-