Project

Back to overview

ULTIMATE: Upper Limit Technology Investigations Mandatory to Attain Terahertz Electronics

English title ULTIMATE: Upper Limit Technology Investigations Mandatory to Attain Terahertz Electronics
Applicant Bolognesi Colombo
Number 169413
Funding scheme Project funding
Research institution Departement Informationstechnologie und Elektrotechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Electrical Engineering
Start/End 01.02.2017 - 30.06.2021
Approved amount 467'016.00
Show all

All Disciplines (2)

Discipline
Electrical Engineering
Condensed Matter Physics

Keywords (7)

Ultrafast Electron Transport; Epitaxy; Sub-Millimeter Waves; Quantum Transport; Heterojunctions; Band structure; Density Functional Theory

Lay Summary (French)

Lead
L'évolution des transistors bipolaires ultra-rapides stagne depuis un certain nombre d'années à des fréquences de coupures aux environs de 500 GHz.Nous croyons que ce plateau ne pourra être dépassé que si on réussi à mettre en place un design plus intelligent des composants électroniques. En ce moment, les outils de simulations commerciaux ne tiennent ni compte de plusieurs effets quantiques ni de la structure de bande détaillée des matériaux composant les transistors.Ce projet tente de remédier à cette situation en appliquant les techniques de transports quantique les plus avancées couplées aux structures de bandes détaillées de matériaux impliqués.
Lay summary

Les techniques de transports quantique de pointe seront couplées aux structures de bandes détaillées calculées par Density Functional Theory (DFT) pour guider le design de transistors à double hétérojonctions (DHBTs) InP/GaInAs et InP/GaAsSb. On obtiendra ainsi une connaissance inédite du transport électronique à haute vitesse dans les alliages III-V comme AlGaInAs et GaInAsSb.

 Les transistors ainsi réalisés à l'ETH-Zurich et 3-5 Labs seront caractérisés sur bancs de test jusqu'à 500 GHz à l'Université de Bordeaux et des modèles extraits pour comparaison avec les prédictions de modélisation. S'il y a lieu, ceci permettra le rafinement des modèles dans le but d'établir un environnement permettant le design de transistors InP approchant légitimement des fréquences de coupure de 1 THz ou 1000 GHz.

La réalisation de tels dispositifs aura une grande importance dans la réalisation de source THz électroniques et permettra le développment des réseaux de communication à haute vitesse qui suivront 5G dans l'ère post-2020.

 

Keywords

Compound semiconductors, heterostructure bipolar transistors (HBTs), quantum transport, density functional theory (DFT), cutoff frequencies

Direct link to Lay Summary Last update: 10.01.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Performance prediction of InP/GaAsSb double heterojunction bipolar transistors for THz applications
Wen Xin, Arabhavi Akshay, Quan Wei, Ostinelli Olivier, Mukherjee Chhandak, Deng Marina, Frégonèse Sébastien, Zimmer Thomas, Maneux Cristell, Bolognesi Colombo R., Luisier Mathieu (2021), Performance prediction of InP/GaAsSb double heterojunction bipolar transistors for THz applications, in Journal of Applied Physics, 130(3), 034502-034502.
Performance prediction of InP/GaAsSb double heterojunction bipolar transistors for THz applications
Wen Xin, Arabhavi Akshay, Quan Wei, Ostinelli Olivier, Mukherjee Chhandak, Deng Marina, Frégonèse Sébastien, Zimmer Thomas, Maneux Cristell, Bolognesi Colombo R., Luisier Mathieu (2021), Performance prediction of InP/GaAsSb double heterojunction bipolar transistors for THz applications, in Journal of Applied Physics, 130(3), 034502-034502.
Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
Mukherjee Chhandak, Deng Marina, Nodjiadjim Virginie, Riet Muriel, Mismer Colin, Guendouz Djeber, Caillaud Christophe, Bertin Hervé, Vaissiere Nicolas, Luisier Mathieu, Wen Xin, De Matos Magali, Mounaix Patrick, Maneux Cristell (2021), Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems, in Applied Sciences, 11(5), 2393-2393.
Design of On-Wafer TRL Calibration Kit for InP Technologies Characterization up to 500 GHz
Deng Marina, Mukherjee Chhandak, Yadav Chandan, Fregonese Sebastien, Zimmer Thomas, De Matos Magali, Quan Wei, Arabhavi Akshay Mahadev, Bolognesi Colombo R., Wen Xin, Luisier Mathieu, Raya Christian, Ardouin Bertrand, Maneux Cristell (2020), Design of On-Wafer TRL Calibration Kit for InP Technologies Characterization up to 500 GHz, in IEEE Transactions on Electron Devices, 67(12), 5441-5447.
A Multiscale TCAD Approach for the Simulation of InP DHBTs and the Extraction of Their Transit Times
Wen Xin, Arabhavi Akshay, Ostinelli Olivier, Bolognesi Colombo, Zimmer Thomas, Maneux Cristell, Luisier Mathieu, Mukherjee Chhandak, Raya Christian, Ardouin Bertrand, Deng Marina, Fregonese Sebastien, Nodjiadjim Virginie, Riet Muriel, Quan Wei (2019), A Multiscale TCAD Approach for the Simulation of InP DHBTs and the Extraction of Their Transit Times, in IEEE Transactions on Electron Devices, 66(12), 5084-5090.
Advances in InP/Ga(In)AsSb double heterojunction bipolar transistors (DHBTs)
Bolognesi Colombo R, Quan Wei, Arabhavi Akshay M, Saranovac Tamara, Flückiger Ralf, Ostinelli Olivier, Wen Xin, Luisier Mathieu (2019), Advances in InP/Ga(In)AsSb double heterojunction bipolar transistors (DHBTs), in Japanese Journal of Applied Physics, 58(SB), SB0802-SB0802.
Scalable Compact Modeling of III–V DHBTs: Prospective Figures of Merit Toward Terahertz Operation
Mukherjee Chhandak, Raya Christian, Ardouin Bertrand, Deng Marina, Fregonese Sebastien, Zimmer Thomas, Nodjiadjim Virginie, Riet Muriel, Dupuy Jean-Yves, Luisier Mathieu, Quan Wei, Arabhavi Akshay, Bolognesi Colombo R., Maneux Cristell (2018), Scalable Compact Modeling of III–V DHBTs: Prospective Figures of Merit Toward Terahertz Operation, in IEEE Transactions on Electron Devices, 65(12), 5357-5364.
Quaternary Graded-Base InP/GaInAsSb DHBTs With ${f}_{\text{T}}$ / ${f}_{\text{MAX}}$ = 547/784 GHz
Quan Wei, Arabhavi Akshay M., Fluckiger Ralf, Ostinelli Olivier, Bolognesi C. R. (2018), Quaternary Graded-Base InP/GaInAsSb DHBTs With ${f}_{\text{T}}$ / ${f}_{\text{MAX}}$ = 547/784 GHz, in IEEE Electron Device Letters, 39(8), 1141-1144.
Reliability-Aware Circuit Design Methodology for Beyond-5G Communication Systems
Mukherjee Chhandak, Ardouin Bertrand, Dupuy Jean-Yves, Nodjiadjim Virginie, Riet Muriel, Zimmer Thomas, Marc Francois, Maneux Cristell (2017), Reliability-Aware Circuit Design Methodology for Beyond-5G Communication Systems, in IEEE Transactions on Device and Materials Reliability, 17(3), 490-506.
Si/SiGe:C and InP/GaAsSb Heterojunction Bipolar Transistors for THz Applications
Chevalier Pascal, Jungemann C., Lovblom Rickard, Maneux Cristell, Ostinelli Olivier, Pawlak Andreas, Rinaldi Niccolo, Rucker Holger, Wedel Gerald, Zimmer Thomas, Schroter Michael, Bolognesi Colombo R., d'Alessandro Vincenzo, Alexandrova Maria, Bock Josef, Flickiger Ralf, Fregonese Sebastien, Heinemann Bernd (2017), Si/SiGe:C and InP/GaAsSb Heterojunction Bipolar Transistors for THz Applications, in Proceedings of the IEEE, 105(6), 1035-1050.

Collaboration

Group / person Country
Types of collaboration
3-5 Lab France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
SERMA Technologies France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
IMS Bordeaux France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Associated projects

Number Title Start Funding scheme
175479 Ab-initio modeling of electro-thermal effects in 2-D materials: from single-layer to van der Waals heterostructure (ABIME) 01.03.2018 Project funding
188725 High-Speed High-Power GaInAsSb/InP UTC-Photodiodes 01.01.2020 Project funding
198612 Advanced Learning Methods On Dedicated nano-Devices (ALMOND) 01.03.2021 Sinergia

Abstract

Ultrafast electronic transport in III-V semiconductor materials is the central subject of investigation of the present proposal. This fundamental research area is of great current scientific and technological interest because it is concerned with the ultimate operating speed and cutoff frequencies of semiconductor devices. The low THz frequency range (< 5 THz) is rich in potential for scientific and technical applications, but it remains largely unexploited so far because of difficulties in generating THz signals by electronic means such as integrated circuit electronics. All-electronics-based THz systems would offer cost and portability advantages, which could make a wide range of THz applications a reality.To gain insight into the fundamental speed limitations of semiconductor devices, one must consider their detailed electronic band structure. To date, even the most advanced devices are still designed based on “back-of-the-envelope” approximations involving interpolations of material properties between the sometimes poorly known properties of binary materials such as GaAs, GaSb, and InAs. In recent years, InP transistor cutoff frequencies reached levels of fT = 500-700 GHz and are stagnating there. This suggests that a new approach is needed if progress toward higher frequencies is to resume.We here propose to exploit first-principles band structure calculations supported by full quantum transport calculations -accounting for tunneling, barrier transmission, and reflection effects across heterojunctions for instance- to design, build, and characterize a new generation of ultrahigh-speed InP-based heterojunction transistors.
-