Project

Back to overview

Exploring the high energy frontier and searches for new physics with the ATLAS detector and its upgrades

Applicant Weber Michael
Number 169015
Funding scheme Project funding
Research institution Laboratorium für Hochenergiephysik Albert Einstein Center Universität Bern
Institution of higher education University of Berne - BE
Main discipline Particle Physics
Start/End 01.10.2016 - 30.09.2019
Approved amount 745'598.00
Show all

Keywords (5)

Pixel Detector; Supersymmetry; Large Hadron Collider; Solid State Detector; Particle Physics Experiment

Lay Summary (German)

Lead
Das ATLAS Experiment am LHC (CERN) in Genf erforscht die Physik auf dem fundamentalsten Niveau: welches sind die elementaren Teilchen und Kräfte in der Natur und dessen Gesetzmässigkeiten. Der LHC ist eines der bedeutendsten Wissenschafts-Projekte der Welt und bildet insbesondere auch in der Schweiz einen strategischen Grundpfeiler der Teilchenphysik-Forschung. Über die letzten Jahrzehnte wurde durch theoretische Ansätze und experimentelle Forschung ein Modell (Standardmodell) entwickelt, welches sehr erfolgreich die Natur beschreibt. Wesentlich dazu beigetragen hat auch die Entdeckung des Higgs Bosons durch das ATLAS Experiment. Das Standardmodell lässt jedoch immer noch Fragen offen über den Ursprung der dunklen Materie, der Asymmetrie von Materie und Antimaterie und der Grössenordnung der Teilchenmassen. Die Antworten könnten in einer neuen Art von Teilchen liegen, deren Existenz am ATLAS Experiment erprobt wird.
Lay summary

Die Ziele dieses Projektes sind erstens die Analyse der Daten, welche momentan vom ATLAS Experiment am LHC (CERN) aufgezeichnet werden und zweitens die Entwicklung von einer neuen Detektor-Technologie für den in Zukunft nötigen Ausbau des Detektors.

2015 hat die zweite Phase (“Run-2”) der Datennahme für das ATLAS Experiment angefangen. Während den drei Jahren dieses Projektes wird Run-2 abgeschlossen und ein 50-faches der heutigen Statistik zur Verfügung stehen, was die Reichweite für eine mögliche Entdeckung neuer Teilchen wesentlich erweitert. Das spezifische Ziel in diesem Projekt ist die Suche nach Teilchen, die in den führenden Theorien (“Supersymmetry”) vorhergesagt werden. Diese bauen auf einer weiteren Symmetrie in der Natur auf, welche den Teilchen im Standardmodell neue Supersymmetrische Teilchen zuordnen, und auf eine natürliche Weise Antworten auf offene Fragen der fundamentalen Physik geben könnten. Das Wissen über die Existenz dieser Teilchen ist also entscheidend für das weitere elementare Verständnis der Natur.

Um die Leistungsfähigkeit des ATLAS Detektors uber die Jahrzehnte der Datennahme aufrecht zu erhalten, muss dieser laufend erweitert und erneuert werden. Ein wesentlicher Umbau wird 2026 mit dem kompletten Ersatz der innersten Detektor-Komponenten erfolgen, um für die Weiterführung des LHC (HL-LHC) gerüstet zu sein, wo eine enorme Dichte von Teilchenspuren in einem extremen Strahlungs-Umgebung erzeugt werden. Dazu wird in diesem Projekt wird an einer innovativen neuen Technologie für hochauflösende Sensoren gearbeitet, wobei die Auslese Elektronik und der aktive Teil des Sensors im gleichen Chip hergestellt werden (“monolitic sensors”). Das wird eine heute unerreichbare Präzision über eine grosse Detektor-Fläche  bei vernünftigen Kosten erlauben, welches für den HL-LHC kritisch ist.

Das Projekt bietet einmalige und ausgezeichnete Forschungsthemen in der Spitzenforschung der fundamentalen Physik für Studierende und junge Forscher.

 
Direct link to Lay Summary Last update: 26.09.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Searches for third-generation scalar leptoquarks in s $$ \sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector
(2019), Searches for third-generation scalar leptoquarks in s $$ \sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector, in Journal of High Energy Physics, 2019(6), 144-144.
Performance of CMOS pixel sensor prototypes in ams H35 and aH18 technology for the ATLAS ITk upgrade
(2019), Performance of CMOS pixel sensor prototypes in ams H35 and aH18 technology for the ATLAS ITk upgrade, in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detector, 924, 104-107.
Summary of publications byt hte ATLAS collaboration
(2019), Summary of publications byt hte ATLAS collaboration, ATLAS Collaboration, CERN.
Test beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor prototypes with high-resistivity substrate
(2018), Test beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor prototypes with high-resistivity substrate, in Journal of Instrumentation, 13(12), P12009-P12009.
Charge collection characterisation with the Transient Current Technique of the ams H35DEMO CMOS detector after proton irradiation
(2018), Charge collection characterisation with the Transient Current Technique of the ams H35DEMO CMOS detector after proton irradiation, in Journal of Instrumentation, 13(10), P10004-P10004.
Production and integration of the ATLAS Insertable B-Layer
(2018), Production and integration of the ATLAS Insertable B-Layer, in Journal of Instrumentation, 13(05), T05008-T05008.
Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes
(2018), Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes, in Journal of Instrumentation, 13(02), P02011-P02011.
Search for direct top squark pair production in final states with two leptons in $$\sqrt{s} = 13$$ s = 13 TeV pp collisions with the ATLAS detector
ATLAS (2017), Search for direct top squark pair production in final states with two leptons in $$\sqrt{s} = 13$$ s = 13 TeV pp collisions with the ATLAS detector, in The European Physical Journal C, 77(12), 898-898.
Search for direct top squark pair production in events with a Higgs or Z boson, and missing transverse momentum in s = 13 $$ \sqrt{s}=13 $$ TeV pp collisions with the ATLAS detector
(2017), Search for direct top squark pair production in events with a Higgs or Z boson, and missing transverse momentum in s = 13 $$ \sqrt{s}=13 $$ TeV pp collisions with the ATLAS detector, in Journal of High Energy Physics, 2017(8), 6-6.
Technical Design Report for the ATLAS Inner Tracker Pixel Detector
(2017), Technical Design Report for the ATLAS Inner Tracker Pixel Detector, ATLAS Collaboration, CERN.

Collaboration

Group / person Country
Types of collaboration
ATLAS Collaboration Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
25th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY17) Talk given at a conference Searches for direct pair production of stops in final states containing taus, charm quarks or H/Z bosons with the ATLAS detector 11.11.2019 Mumbai, India Weber Michael; Miucci Antonio; Anders John Kenneth;
Particles and Nuclei International Conference 2017 Talk given at a conference Searches for direct pair production of third generation squarks with the ATLAS detector 01.08.2019 Beijing, China Rimoldi Marco; Merlassino Claudia; Weber Michael; Mullier Geoffrey; Anders John Kenneth;
PM2018 - 14th Pisa Meeting on Advanced Detectors Talk given at a conference Characterisation of the radiation hardness of HV-CMOS sensors using the Transient Current Technique 27.05.2018 La Biodola, Italy Fehr Armin; Weber Michael; Miucci Antonio; Merlassino Claudia;
PSD11: The 11th International Conference on Position Sensitive Detectors Talk given at a conference CMOS pixel development for the ATLAS experiment at HL-LHC 03.09.2017 Milton Keynes, Great Britain and Northern Ireland Rimoldi Marco; Fehr Armin; Miucci Antonio; Weber Michael;


Associated projects

Number Title Start Funding scheme
160433 FLARE: Maintenance & Operation for the LHC Experiments 2015 01.04.2015 FLARE
160474 FLARE - ATLAS Detector Operation and Upgrades at the CERN Large Hadron Collider (LHC) 01.04.2015 FLARE
186265 Machine Learning for Upgrades in Large Data Volumes and High-Event Rate for Handling Pile-up Noise and Data Fusion in Experimental High-Energy Physics 01.12.2020 Resource not found: '73db8922-9c9a-4c27-a5dd-3e7f63f62a65'
160434 FLARE - GRID Infrastructure for LHC Experiments 01.04.2015 FLARE
188442 Search for new physics with high precision tracking detectors 01.10.2019 Project funding
163402 Teilchenphysik-Experimente und Entwicklung von Teilchen-Detektoren 01.10.2015 Project funding
173601 FLARE - ATLAS Detector Operation and Phase-II Upgrade at the CERN Large Hadron Collider (LHC) 01.04.2017 FLARE

Abstract

We propose to exploit the data being collected by the ATLAS experiment at the Large Hadron Collider (LHC) and to develop novel detector technologies for its future upgrades. The LHC is considered one of the flagship science projects in the field of high energy physics worldwide and, specifically, the Swiss particle physics community designates it as one of its three strategic pillars in the roadmap update document of 2011. A very successful first run resulted in more than 500 scientific publications from ATLAS and a similar scientific output from the other large LHC experiments. After a two year long upgrade phase, in which a new innermost layer of pixel sensors was installed with significant contributions from the Bern group, the ATLAS experiment is now in the second data collecting phase (“Run 2”). During the period of this proposal, Run 2 will be completed and we will accumulate data corresponding to 150 fb-1 of integrated luminosity (50 times the current statistics) at 13 TeV center of mass, considerably extending the reach for discoveries of new particles. The analysis of this data, searching for new particles, is a major goal of this proposal. We plan to perform dedicated searches for Supersymmetry in events with leptons in the final state. The analyses will evolve from aiming at early discoveries to more challenging channels as the phase space for new particles is narrowing. The initial analysis will target the next to lightest top squarks, which have clear detection signatures. We will then search for the lightest top squark, which exhibits very similar signatures to Standard Model top quark and is thus difficult to isolate and will require novel analysis tools. Later we will aim at the less frequent production modes involving the electroweak interaction, which require the full Run 2 data set to be probed. Our strategy and analyses are flexible enough to allow us to also study possible new particles, in case of interesting findings or a discovery, which may be made already on data collected in summer 2016 before the project starts.In view of the complete replacement of the inner tracker of the ATLAS experiment during a future upgrade phase in 2024, we will develop new pixel detectors. We will advance the technology of novel silicon sensors that include both a sensitive volume and readout front-end in a single unit (monolithic sensors) for application in high-energy collider experiments. They will allow to cover unprecedented large surfaces with high granularity pixel sensors at a reasonable cost, and thus enabling better particle tracking performance, which is critical for the High Luminosity LHC (HL-LHC). This project will offer unique and outstanding thesis and research topics at the forefront of science for three PhD students and one PostDoc.
-