Project

Back to overview

Position Dependence of Retinal Computation

Applicant Franke Felix
Number 167989
Funding scheme Ambizione
Research institution Computational Systems Biology Department of Biosystems, D-BSSE ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Neurophysiology and Brain Research
Start/End 01.06.2017 - 31.05.2020
Approved amount 633'183.00
Show all

All Disciplines (2)

Discipline
Neurophysiology and Brain Research
Electrical Engineering

Keywords (5)

Microelectrode Arrays; Information Processing of Neurons; Signal Processing of the Retina; Retinal Ganglion Cell Mosaics; Retina

Lay Summary (German)

Lead
Die Retina ist eine Zellschicht an der Rückwand des Augapfels in der, ähnlich wie im Sensor einer Digitalkamera, lichtsensitive Zellen einfallendes Licht in elektrische Aktivität umwandeln. Anders als bei einer Kamera wird das aufgenommene Bild aber direkt innerhalb der Retina von einem neuronalen Schaltkreis analysiert, und es werden nur vorverarbeitete und komprimierte Informationen ans Gehirn geschickt. Die Retina ist dabei nicht im ganzen Auge identisch, sondern hat spezialisierte Bereiche: Wir sehen nach vorne anders als in der Peripherie. In diesem Projekt wollen wir verstehen, wie unterschiedlich die Informationsverarbeitung der verschiedenen Bereiche in der Retina ist und welche Informationen über die visuelle Welt an verschiedenen Positionen in der Retina extrahiert und ans Gehirn geschickt werden.
Lay summary

Inhalt und Ziele des Forschungsprojekts

Wir wollen die Aktivität der Zellen in der Retina messen, während die Retina „sieht“. Mittels neuentwickelter Messtechnik ist es jüngst möglich geworden, die Aktivitätsmuster vieler Zellen in der Retina gleichzeitig und über größere Bereiche zu messen. Wir werden das Antwortverhalten tausender Zellen über die gesamte Retina vergleichen während diese mit einem standardisierten Lichtstimulus konfrontiert werden.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Ist die Informationsverarbeitung in der Retina gestört, können verschiedene Krankheiten und Blindheit die Folge sein. Wege diese Krankheiten zu lindern oder zu heilen, z.B. durch retinale Implantate, erfordern ein Grundverständnis der retinalen Informationsverarbeitung. Außerdem zeichnet sich immer mehr ab, dass Strategien der Informationsverarbeitung in der Retina auch im Gehirn verbreitet sind. Die Erkenntnisse dieses Projekts werden sich also teilweise auf die Hirnforschung übertragen lassen.

Direct link to Lay Summary Last update: 10.05.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Perceptual saccadic suppression starts in the retina
Idrees Saad, Baumann Matthias P., Franke Felix, Münch Thomas A., Hafed Ziad M. (2020), Perceptual saccadic suppression starts in the retina, in Nature Communications, 11(1), 1977-1977.
Massively parallel microwire arrays integrated with CMOS chips for neural recording
Obaid Abdulmalik, Hanna Mina-Elraheb, Wu Yu-Wei, Kollo Mihaly, Racz Romeo, Angle Matthew R., Müller Jan, Brackbill Nora, Wray William, Franke Felix, Chichilnisky E. J., Hierlemann Andreas, Ding Jun B., Schaefer Andreas T., Melosh Nicholas A. (2020), Massively parallel microwire arrays integrated with CMOS chips for neural recording, in Science Advances, 12.
Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies
Viswam Vijay, Obien Marie Engelene J., Franke Felix, Frey Urs, Hierlemann Andreas (2019), Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies, in Frontiers in Neuroscience, 13, 1-1.
Technologies to Study Action Potential Propagation With a Focus on HD-MEAs
Emmenegger Vishalini, Obien Marie Engelene J., Franke Felix, Hierlemann Andreas (2019), Technologies to Study Action Potential Propagation With a Focus on HD-MEAs, in Frontiers in Cellular Neuroscience, 13, 1-1.
Automatic spike sorting for high-density microelectrode arrays
Diggelmann Roland, Fiscella Michele, Hierlemann Andreas, Franke Felix (2018), Automatic spike sorting for high-density microelectrode arrays, in Journal of Neurophysiology, 120(6), 3155-3171.
How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse
Drinnenberg Antonia, Franke Felix, Morikawa Rei K., Jüttner Josephine, Hillier Daniel, Hantz Peter, Hierlemann Andreas, Azeredo da Silveira Rava, Roska Botond (2018), How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse, in Neuron, 99(1), 117-134.
Acquisition of Bioelectrical Signals with Small Electrodes
Viswam Vijay, Obien Marie, Frey Urs, Franke Felix, Hierlemann Andreas (2017), Acquisition of Bioelectrical Signals with Small Electrodes, in IEEE Biomed Circuits Syst Conf., Torino, Italy IEEE, Torino, Italy.
Tracking individual action potentials throughout mammalian axonal arbors
Radivojevic Milos, Franke Felix, Altermatt Michael, Müller Jan, Hierlemann Andreas, Bakkum Douglas J (2017), Tracking individual action potentials throughout mammalian axonal arbors, in eLIFE, 6.

Collaboration

Group / person Country
Types of collaboration
Botond Roska, Friedrich-Miescher Institut Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Rava da Silveira, Ecole Normale Superieure, Paris France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Thomas Münch, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
ARVO Annual Meeting 2020 Talk given at a conference Saccadic suppression by way of retinal image processing 01.05.2020 Baltimore, United States of America Franke Felix;
Society for Neuroscience (SFN), 2019 Poster Improved receptive-field characterization of retinal ganglion cells using a large field-of-view light stimuli 19.10.2019 Chicago, Illinois, United States of America Žnidaric Matej; Franke Felix;
Society for Neuroscience (SFN), 2019 Poster Ex vivo mouse retinal recordings using HD-MEA systems: From characterizing single cells to analyzing populations 19.10.2019 Chicago, Illinois, United States of America Franke Felix; Žnidaric Matej;
Society for Neuroscience (SFN), 2019 Poster Saccadic suppression in the retina and its underlying mechanisms 19.10.2019 Chicago, Illinois, United States of America Franke Felix;
Society for Neuroscience (SFN), 2019 Poster How the coupling strength of horizontal cells effects the retinal processing of spatio-temporal light stimuli - Model and experiments 19.10.2019 Chicago, Illinois, United States of America Franke Felix; Žnidaric Matej;
Spike Sorting and Reproducibility for Next Generation Electrophysiology Talk given at a conference Template-matching-based spike sorting for large scale high-density electrode arrays. Past and future challenges 24.06.2019 Edinburgh, Great Britain and Northern Ireland Franke Felix;
Spike Sorting and Reproducibility for Next Generation Electrophysiology Workshop, 2019 Individual talk Template-matching-based spike sorting for large scale high-density electrode arrays. Past and future challenges 24.06.2019 Edinburgh, Great Britain and Northern Ireland Franke Felix;
Society for Neuroscience (SfN) Meeting, 2018 Poster Extra-retinal mechanisms as compensation for retinal-circuit-level visual suppression around saccades 03.11.2018 San Diego, United States of America Franke Felix;
Society for Neuroscience (SfN) Meeting, 2018 Poster How feedback at the first visual synapse shapes functional diversity in the retina 03.11.2018 San Diego, United States of America Franke Felix;
Bernstein Conference 2018 Poster Retinal circuit origins of perceptual saccadic suppression 25.09.2018 Berlin, Germany Franke Felix;
11th FENS Forum of Neuroscience Poster How feedback inhibition at the first visual synapse shapes functional diversity in the retina 07.07.2018 Berlin, Germany Franke Felix;
11th FENS Forum of Neuroscience Poster How diverse retinal functions arise at the first visual synapse 07.07.2018 Berlin, Germany Franke Felix;
MEA Meeting 2018 | 11th International Meeting on Substrate Integrated Microelectrode Arrays Poster Effective benchmarking of high-density MEA spike-sorters 03.07.2018 Reutlingen, Germany Franke Felix;
MEA Meeting 2018 | 11th International Meeting on Substrate Integrated Microelectrode Arrays Poster Large field-of-view HD-MEA setup for ex vivo mouse retina electrophysiological recordings 03.07.2018 Reutlingen, Germany Franke Felix; Žnidaric Matej;
FASEB Retinal Neurobiology and Visual Processing Poster How diverse retinal functions arise from feedback at the first visual synapse 24.06.2018 Olean, United States of America Franke Felix;
FASEB Retinal Neurobiology and Visual Processing Poster Horizontal cell feedback differentially shapes the response dynamics of distinct retinal output channels 24.06.2018 Olean, United States of America Franke Felix;
Vision Sciences Society Annual Meeting 2018 Talk given at a conference Extra-retinal mechanisms as compensation for retinal-circuit-level visual masking effects in saccadic suppression 18.05.2018 St. Pete Beach, Fla, United States of America Franke Felix;
26th Annual Computational Neuroscience Conference, CNS2017 Talk given at a conference Population Coding with Two-Dimensional Feature Maps in the Retina 15.07.2017 Antwerpen, Belgium Franke Felix;
11th FENS Forum of Neuroscience Poster The role of horizontal cells in spatial computation in early visual processing 07.07.2017 Berlin, Germany Franke Felix; Žnidaric Matej;


Abstract

The nature of the image that falls on the retina is determined by the way eyes move within an environment, and by the way the eye’s optics transform an image. Every part of the retina sees a different part of the visual world: the ventral part will often see sky; the dorsal part will mostly look downwards; and, a typical forward movement of the head will induce a complex visual flow field that has different velocities at different positions on the retina. When an image falls on an eye, it is encoded by more than 30 kinds of retinal ganglion cells. Each of these cell types transforms a certain ‘feature’ of the stimulus into a neural code, and then sends it to the brain. My hypothesis is that retinal circuits that give rise to the ‘feature’ each cell extracts from the stimulus, have adapted to the position-dependent stimulus characteristics. I intend to explore the position-dependent nature of retinal image processing, first by measuring the position dependence of retinal ganglion cell properties across the whole retina, and then by describing the interplay between eye optics and position dependence. I will determine variance in functional properties of ganglion cells of the same cell type across the retina, e.g., with eccentricity, and then take a computational approach to explaining and understanding that variance. My computational approach is novel because it combines: a) measuring and modeling the optics of the eye, with b) population recordings of unprecedented quality from retinal ganglion cells over large retinal areas, and c) computational modeling of the spatially-extended, position-dependent neural computations the retina performs. My central research question is thus: Do neural computations and the neural code implemented by the retina depend on retinal position?
-