Project

Back to overview

The complex ecology of bacterial toxin production

Applicant Gonzalez Diego
Number 167703
Funding scheme Advanced Postdoc.Mobility
Research institution Département de Microbiologie Fondamentale Faculté de Biologie et de Médecine Université de Lausanne
Institution of higher education Institution abroad - IACH
Main discipline Experimental Microbiology
Start/End 01.07.2016 - 30.06.2018
Show all

All Disciplines (4)

Discipline
Experimental Microbiology
Genetics
Ecology
Molecular Biology

Keywords (5)

colicins; ecology; evolution; bacteria; toxins

Lay Summary (French)

Lead
Ecologie de la compétition bactérienne par l’intermédiaire de toxinesLa plupart des bactéries produisent des toxines destinées à inhiber d’autres microorganismes. Ces toxines semblent jouer un rôle fondamental dans l’écologie de communautés microbiennes telles que celles qui caractérisent notre système digestif ou la rhizosphère. Dans le cadre de ce projet, nous tentons de mieux comprendre l’impact d’une classe de toxines bactéricides sur le succès évolutif des souches bactériennes qui les produisent et, plus largement, sur la dynamique des communautés microbiennes.
Lay summary
Nous nous attacherons notamment à comprendre les stratégies qui président à la production des toxines. Dans la mesure où les toxines sont des sécrétions coûteuses, la décision qui préside à leur production ne saurait être prise au hasard. En nous appuyant sur des techniques modernes de microscopie, nous chercherons à décrire précisément la dynamique spatiale et temporelle de la production des toxines, en la présence ou en l’absence de compétiteurs, et à expliquer les comportements observés en terme écologiques.
Direct link to Lay Summary Last update: 24.07.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Costs and benefits of provocation in bacterial warfare
Gonzalez Diego, Sabnis Akshay, Foster Kevin R., Mavridou Despoina A. I. (2018), Costs and benefits of provocation in bacterial warfare, in Proceedings of the National Academy of Sciences, 115(29), 7593-7598.
Bacteria Use Collective Behavior to Generate Diverse Combat Strategies
Mavridou Despoina A.I., Gonzalez Diego, Kim Wook, West Stuart A., Foster Kevin R. (2018), Bacteria Use Collective Behavior to Generate Diverse Combat Strategies, in Current Biology, 28(3), 345-355.e4.
Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa
Valentini Martina, Gonzalez Diego, Mavridou Despoina AI, Filloux Alain (2018), Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa, in Current Opinion in Microbiology, 41, 15-20.

Collaboration

Group / person Country
Types of collaboration
Dr Martina Valentini, Université de Genève Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr Despoina Mavridou, Imperial College London Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Symbiosis in the microbial world: from ecology to genome evolution Talk given at a conference Plasmid-driven manipulation of aggressive behaviours in Escherichia coli 05.11.2017 Wiston House, Great Britain and Northern Ireland Gonzalez Diego;


Associated projects

Number Title Start Funding scheme
155109 Molecular mechanisms of resistance to Bdellovibrio in bacterial prey 01.01.2015 Early Postdoc.Mobility

Abstract

In order to enhance their competitivity, most bacteria produce toxins that inhibit or kill other bacteria. There is evidence that these antimicrobial compounds play a crucial role in the population dynamics of complex bacterial communities like the gut or the rhizosphere microbiota. Despite some precursory studies, detailed knowledge on how toxins may influence the succession of bacterial strains in communities remains scarce. Since toxin production is usually a very costly behavior, the evolutionary success of a strain depends as much on the toxins it encodes as on the strategy it uses to decide when to produce them or not. My aim in this project is to study widespread regulatory strategies that rule the production of toxins using an approach combining bacterial genetics and eco-evolutionary analyses. I chose colicins, a very diverse family of antibacterial protein toxins found in Escherichia coli and other Enterobacteria, as an experimental model, as they are exceptionally well known from a biochemical and regulatory perspective, but have hardly been studied in an evolutionary framework.
-