Project

Back to overview

X-Ray Fourier Ptychography

English title X-Ray Fourier Ptychography
Applicant Menzel Andreas
Number 166304
Funding scheme Project funding (Div. I-III)
Research institution Synchrotron Lichtquelle Schweiz Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Other disciplines of Physics
Start/End 01.04.2016 - 31.03.2019
Approved amount 203'008.00
Show all

Keywords (3)

Microscopy; X-Ray; Ptychography

Lay Summary (German)

Lead
„Fourier Ptychografie“ ist eine Mikroskopietechnik, in der das Objekt mehrmals aus verschiedenen Richtungen beleuchtet wird. Daraufhin werden mehrere derartiger, verhältnismäßig niedrigauflösender Bilder kombiniert, um so die Abbildungsleistung eines Mikroskops zu verbessern. So kann z.B. die Auflösung bei gleichbleibenden Bildbereich vergrößert werden, kontrastarme Objekte können besser und zuverlässiger abgebildet werden, und verschiedene Abbildungsfehler können korrigiert werden. Die Technik wurde als eine der wesentlichen Entwicklungen 2013 in der Photonik, der Wissenschaft von Kontrolle und Anwendung von Licht, bezeichnet.
Lay summary

In einem Doktorantenprojekt soll das Verfahren nun auf die Röntgenmikroskopie übertragen werden.  Röntgenstrahlen erlauben einzigartige Einblicke in das Innere technischer Materialien, von Kulturgegenständen oder von Gewebe und Zellverbänden.  Ihre kurze Wellenlänge erlaubt dabei prinzipiell eine hohe Auflösung.  Allerdings sind Röntgenoptiken bei Weitem nicht so leistungsstark wie optische Elemente für sichtbares Licht.  Fourier Ptychografie ist eine vielversprechende Option, dieses Defizit anzugehen.

Dazu werden wir experimentelle Techniken bestimmen und entwickeln, die Fourier ptychografische Röntgenmessungen zuverlässig zu realisieren erlauben.  Auflösungsvermögen, Bildtreue und Abbildungsempfindlichkeit sollen quantifiziert werden, um Vor- und Nachteile gegenüber üblichen Röntgenmikroskopietechniken zu bestimmen.  Schließlich soll das Potential der Technik für praktische Anwendungen charakterisiert und demonstriert werden.

Direct link to Lay Summary Last update: 29.03.2016

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
X-ray Fourier ptychography
Wakonig Klaus, Diaz Ana, Bonnin Anne, Stampanoni Marco, Bergamaschi Anna, Ihli Johannes, Guizar-Sicairos Manuel, Menzel Andreas (2019), X-ray Fourier ptychography, in Science Advances, 5(2), eaav0282-eaav0282.

Datasets

Data for "X-ray Fourier ptychography"

Author Wakonig, Klaus; Diaz, Ana; Bonnin, Anne; Stampanoni, Marco; Bergamaschi, Anna; Ihli, Johannes; Guizar-Sicairo, Manuel; Menzel, Andreas
Persistent Identifier (PID) DOI 10.5281/zenodo.2537927
Repository zenodo


Awards

Title Year
HERCULES School Poster Prize 2018
European NESY Winterschool Young Scientist Best Poster Prize 2017

Associated projects

Number Title Start Funding scheme
169623 Improved multislice nanotomography using ptychography with angular diversity 01.01.2017 Project funding (Div. I-III)
178788 Temporal tomographic synthesis for nanoscale characterization of electrode materials 01.04.2018 Project funding (Div. I-III)
152554 Ptychography with extended depth of field for tomography applications 01.01.2015 Project funding (Div. I-III)
153556 Visualization of pores in individual catalyst particles 01.10.2014 Project funding (Div. I-III)
137772 High-resolution quantitative local X-ray phase tomography 01.04.2013 Project funding (Div. I-III)

Abstract

We plan to implement and characterize hard X-ray Fourier ptychography and to assess its suitability for high-resolution X-ray microscopy.Closely related to synthetic-aperture imaging, Fourier ptychography comprises multiple image acquisitions, for which the direction of illumination is varied systematically and which are numerically combined in order to extend the functionality of optical elements. Fourier ptychography allows both amplitude and phase contrast to be quantified simultaneously, providing essentially complete knowledge of the wave field and permitting emulation of arbitrary imaging systems, a capability referred to as "omnimicroscopy." It can be used to improve resolution, working distance, sensitivity, field of view, depth of field, inter alia, and has been called one of the breakthroughs in photonics 2013.Within this project, we aim to explore various modes of implementation and applications and compare X-ray Fourier ptychography to established high-resolution X-ray microscopy techniques, such as transmission X-ray microscopy, in-line holography, and coherent diffractive imaging. The technique's resolving power, sensitivity, and dose efficiency will be of special interest, as will be its capability, proven in the visible-light regime, of correcting for certain aberrations of imaging optics. To this task, we apply for funding for a three-year PhD project to be hosted at the Paul Scherrer Institute and ETH Zurich.Compared to the visible-light regime, X-ray optics are of significantly lower quality: Numerical apertures are low, foregoing most of the potential resolving power offered by the short wavelength, and efficiencies are low in particular when care needs to be taken to have low aberrations. While for wavelengths << 1 nm, producing reasonably efficient high-quality imaging optics remains a challenge, for longer wavelengths, e.g., in the so-called water window, depth of field limitations start to impede higher spatial resolution when imaging, for instance, single unsectioned cells.We aim to address these challenges utilizing and developing Fourier ptychographic techniques appropriate for high-resolution X-ray microscopy and will demonstrate the technique. For instance, we will aim to realize at ~ 20 keV photon energy, dose-efficient Fourier-ptychography-assisted imaging at ~ 100 nm resolution.We will further evaluate benefits and challenges for future implementations.
-