Project

Back to overview

Mechanical Basis for the Convergent Evolution of Sensory Hairs in Animals and Plants

English title Mechanical Basis for the Convergent Evolution of Sensory Hairs in Animals and Plants
Applicant Grossniklaus Ueli
Number 166110
Funding scheme Interdisciplinary projects
Research institution Institut für Pflanzen- und Mikrobiologie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Technical Physics
Start/End 01.08.2016 - 31.01.2021
Approved amount 825'532.00
Show all

All Disciplines (4)

Discipline
Technical Physics
Microelectronics. Optoelectronics
Material Sciences
Other disciplines of Engineering Sciences

Keywords (14)

micro-mechanical force sensors; finite element method (FEM); spider; focused ion beam scanning electron microscopy; Venus flytrap; cellular force microscopy; mechanoperception; cell biology; convergent evolution; mathematical modeling; microelectronic mechanical systems (MEMS); atomic force microscopy; tactile hairs; mechanical properties

Lay Summary (German)

Lead
Sowohl im Pflanzen- wie im Tierreich haben gewisse Arten mechanosensorische Haare entwickelt, um Insekten zu detektieren. So nutzt zum Beispiel die Kammspinne sensorische Haare um sexuelle Partner zu finden und ihre Beute, kleine Insekten, zu lokalisieren. Auf ähnliche Weise detektiert die Venusfliegenfalle, eine fleischfressende Pflanzen, Insekten durch mechanosensorischen Haare, welche zum Schliessen der Falle führen. In diesem interdisziplinären Projekt untersuchen wir, ob den sensorischen Haaren von Spinnen und Pflanzen ähnliche physikalische Eigenschaften zugrunde liegen.
Lay summary

Über die letzten Jahre hat man realisiert, dass nicht nur biochemische Eigenschaften biologischen Prozessen zugrunde liegen, sondern dass auch physikalische Rahmenbedingungen eine wichtige Rolle für die Funktion von Geweben und Zellen spielen. In diesem Projekt wollen wir die grundlegenden mechanischen Prinzipien untersuchen, welche die unabhängige Evolution mechanosensorischer Haare in Spinnen und Pflanzen ermöglicht haben.

Während die physikalischen Eigenschaften von taktilen Haaren der Kammspinne Cupiennius salei gemessen und modeliert wurden, hat man die mechanosensorischen Haare der Venusfliegenfalle Dionaea muscipula bisher nur auf elektrophysiologischer Ebene untersucht. Da die Evolution dieser sensorischen Haare den gleichen physikalischen Rahmenbedingungen unterlag, ist es von grossem Interesse herauszufinden, ob dies zur Entwicklung konvergenter Detektionssysteme geführt hat. In einem interdisziplinären Projekt werden wir neue Methoden für die Messung von mechanischen Eigenschaften und Kräften nutzen, um die physikalischen Grundlagen der mechanosensorischen Haare der Venusfliegenfalle besser zu verstehen, sie durch mathematischen Modelle zu beschreiben und mit denen der Kammspinne zu vergleichen.

Dieses interdisziplinäre Projekt bringt Spezialisten von traditionell sehr unterschiedlichen Fachrichtungen - Pflanzenbiologie, Nanotechnologie, Materialwissenschaften, Modellierung - zusammen, um ein System zu studieren, das Wissenschaftler seit über 180 Jahren fasziniert.

Direct link to Lay Summary Last update: 16.07.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy
Läubli Nino F., Burri Jan T., Marquard Julian, Vogler Hannes, Mosca Gabriella, Vertti-Quintero Nadia, Shamsudhin Naveen, deMello Andrew, Grossniklaus Ueli, Ahmed Daniel, Nelson Bradley J. (2021), 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy, in Nature Communications, 12(1), 2583-2583.
Kinematics Governing Mechanotransduction in the Sensory Hair of the Venus flytrap
Saikia Eashan, Läubli Nino F., Burri Jan T., Rüggeberg Markus, Schlepütz Christian M., Vogler Hannes, Burgert Ingo, Herrmann Hans J., Nelson Bradley J., Grossniklaus Ueli, Wittel Falk K. (2021), Kinematics Governing Mechanotransduction in the Sensory Hair of the Venus flytrap, in International Journal of Molecular Sciences, 22(1), 280-280.
A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure
Burri Jan T., Saikia Eashan, Läubli Nino F., Vogler Hannes, Wittel Falk K., Rüggeberg Markus, Herrmann Hans J., Burgert Ingo, Nelson Bradley J., Grossniklaus Ueli (2020), A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure, in PLOS Biology, 18(7), e3000740-e3000740.
Pollen and Pollen Tube Biology Methods and Protocols
Burri Jan T., Munglani Gautam, Nelson Bradley J., Grossniklaus Ueli, Vogler Hannes (2020), Pollen and Pollen Tube Biology Methods and Protocols, in Geitmann Anja (ed.), Springer US, New York, NY, 275-292.
To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth
Vogler Hannes, Santos-Fernandez Gorka, Mecchia Martin A, Grossniklaus Ueli (2019), To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth, in Current Opinion in Plant Biology, 52, 131-139.
3D Manipulation and Imaging of Plant Cells using Acoustically Activated Microbubbles
Läubli Nino F., Shamsudhin Naveen, Vogler Hannes, Munglani Gautam, Grossniklaus Ueli, Ahmed Daniel, Nelson Bradley J. (2019), 3D Manipulation and Imaging of Plant Cells using Acoustically Activated Microbubbles, in Small Methods, 3(3), 1800527-1800527.

Datasets

Workflow flytrap closure

Author Burri, Jan
Publication date 06.06.2019
Persistent Identifier (PID) 10.5281/zenodo.3799874
Repository Zenodo
Abstract
Workflow used in Burri JT, Saikia E, Läubli NF, Vogler H, Wittel FK, Rüggeberg M, Herrmann HJ, Burgert I, Nelson BJ Grossniklaus U (2020). A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biology 18, e3000740.

Raw data from PLoS Biol 18, e3000740

Author Burri, Jan
Publication date 06.06.2020
Persistent Identifier (PID) https://doi.org/10.1371/journal.pbio.3000740.s007
Repository PLoS
Abstract
Raw data from Burri JT, Saikia E, Läubli NF, Vogler H, Wittel FK, Rüggeberg M, Herrmann HJ, Burgert I, Nelson BJ Grossniklaus U (2020). A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biology 18, e3000740.

Micro-CT scans of the Venus flytrap tactile hairs: complete dataset

Author Saikia, Eashan
Publication date 06.06.2020
Persistent Identifier (PID) https://doi.org/10.3929/ethz-b-000460459
Repository ETHZ
Abstract
Micro-CT scans of the Venus flytrap tactile hairs: complete dataset

Micro-CT scans of the Venus flytrap tactile hairs: published data

Author Saikia, Eashan
Publication date 06.06.2020
Persistent Identifier (PID) https://doi.org/10.3929/ethz-b-000448954
Repository ETHZ
Abstract
Micro-CT scans of the Venus flytrap tactile hairs. : data published in Saikia E, Läubli NF, Burri JT, Rüggeberg M, Schlepütz CM, Vogler H, Burgert I, Herrmann HJ, Nelson BJ, Grossniklaus U Wittel FK (2021). Kinematics Governing Mechanotransduction in the Sensory Hair of the Venus flytrap. Int. J. Mol. Sci 22, 280.

Collaboration

Group / person Country
Types of collaboration
FemtoTools AG, Buchs Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
Christian Schlepütz, Paul Scherrer Institute, Villigen Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Urs Ziegler, 'Zentrum für Mikroskopie und Bildverarbeitung' (ZMB), University of Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
ECCOMAS Congress 2020 & 14th WCCM Talk given at a conference Multi-scale modelling of mechanotransduction in tactile hairs of the Venus flytrap 19.07.2020 Paris (conference held virtually), France SAIKIA EASHAN; Herrmann Hans;
Seminar at the National Institute of Basic Biology Individual talk The Mechanical Basis for Snapping of the Venus Flytrap 19.12.2019 Okazaki, Japan Grossniklaus Ueli;
Manipulation and Characterization for biological applications Talk given at a conference Manipulation and characterization at small scales: From single cells to organisms 27.11.2019 Besancon, France Läubli Nino; Vogler Hannes; Nelson Bradley; Grossniklaus Ueli;
Active Matter and Soft Robotics Workshop Talk given at a conference Soft Microrobotics and Applications in Medicine 01.10.2019 Brussels, Belgium Nelson Bradley;
Seminar at the Institute of Transformative bioMolecules (ITbM) Individual talk The Mechanical Basis for Snapping of the Venus Flytrap 01.10.2019 Nagoya University, Japan Grossniklaus Ueli;
International Conference on Manipulation Automation and Robotics at Small Scales Talk given at a conference Micromechanical characterization of plants: From single cells to plant tissues 02.07.2019 Helsinki, Finland Nelson Bradley; Läubli Nino; Grossniklaus Ueli; Vogler Hannes;
Hamlyn Symposium on Medical Robotics Talk given at a conference Soft Microrobotics and Medicine 01.06.2019 London, Great Britain and Northern Ireland Nelson Bradley;
International Conference on Robotics and Automation (ICRA2019) Talk given at a conference Soft Microrobotics and Medicine 05.05.2019 Montreal, Canada Nelson Bradley;
MICCAI 2018 Talk given at a conference Soft Micro Robotics and Applications in Medicine 19.09.2018 Grenada, Spain Nelson Bradley;
BIOROB 2018 Talk given at a conference Soft Micro Robotics and Applications in Medicine 28.08.2018 Enschede, Netherlands Nelson Bradley;
EMediC Global 2018 Talk given at a conference Soft Micro Robotics and Applications in Medicine 19.08.2018 Hongkong, Hongkong Nelson Bradley;
World Robotics Conference Talk given at a conference Soft Micro Robotics and Applications in Medicine 16.08.2018 Beijing, China Nelson Bradley;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Scientifica 2019 Performances, exhibitions (e.g. for education institutions) 30.08.2019 Zürich, Switzerland SAIKIA EASHAN; Läubli Nino; Nelson Bradley;
Scientifica 2017 Performances, exhibitions (e.g. for education institutions) 01.09.2017 Zürich, Switzerland Läubli Nino; SAIKIA EASHAN; Nelson Bradley;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Trilobites Why Scientists Made Venus Flytraps That Glow New York Times International 2021
Media relations: print media, online media Venus flytrap mechanism could shed light on how plants sense touch PNAS International 2021
Media relations: print media, online media Comment les pièges à mouches Venus s’enclenchent Actualiés Santé International 2020
Media relations: print media, online media Der Biss der fleischfressenden Pflanze: Blitzartig schnappt die Venusfliegenfalle zu Argauer Zeitung German-speaking Switzerland 2020
Media relations: print media, online media Die Venusfliegenfalle schnappt sich auch langsame Beute Nau.ch German-speaking Switzerland 2020
Media relations: print media, online media How Venus flytraps snap Science Daily International 2020
Media relations: print media, online media How Venus Flytraps Snap: Sophisticated Trapping Mechanism Revealed in New Research SciTechDaily International 2020
Video/Film Meet your lab International 2020
Media relations: print media, online media Slow touches make Venus flytraps snap shut Futurity International 2020
Media relations: print media, online media Sorpresa con la venus atrapamoscas, un modo alternativo de cazar para esta planta carnívora Noticias de la CienCia y la Tecnologia International 2020
Media relations: print media, online media Study Reveals a New Trigger in Trapping Mechanisms of Venus Flytraps The Science Times International 2020

Associated projects

Number Title Start Funding scheme
147152 Wireless Magnetic Nanoprobes: a Tool for Characterizing and Modeling Cell Biomechanics 01.08.2013 Interdisciplinary projects
156724 Acid growth theory - a fundamental concept of plant development revisited 01.04.2015 Interdisciplinary projects

Abstract

In both the animal and plant kingdoms, certain species evolved mechanosensory or tactile hairs that play a crucial role for their survival. For instance, the spider Cupiennius salei relies on sensory hairs for interactions with its abiotic environment, sexual partners, and prey (Barth, 2004). Similar-ly, the carnivorous plant Dionaea muscipula (Venus flytrap) detects insects through mechanosen-sory hairs whose stimulation triggers the closure of the trap, a mechanism that has fascinated sci-entists since Darwin (1875). Both types of tactile hairs detect the presence or absence of a stimu-lus, but not its orientation or dynamics. Although tactile hairs in plants and animals evolved inde-pendently of each other, their evolution was subject to the same constraints of the physical world. While the physical properties of tactile spider hairs have been measured and modeled (Dechant et al., 2001), very little is known about the mechanical properties of the Venus flytrap’s trigger hairs. Over the last years, it has become increasingly obvious that not only biochemical properties shape the biological world but that physical constraints play a key role for the function of cells and tissues. This project will shed light onto the fundamental principles underlying mechanosensing by tactile hairs in biological systems as diverse as spiders and plants. We will focus on the mechanosensory hairs of the Venus flytrap and (1) develop new tools to measure the mechanical forces in this sys-tem, (2) investigate whether these mechanosensory hairs detect the presence of an insect using the same physical principles as the tactile hairs of spiders, (3) determine what forces are required to trigger trap closure, (4) model this sophisticated mechanosensing system, and (5) test and fine-tune the model through reiterative cycles of measurements and modeling. The success of this project depends on the development of new methodological and modeling ap-proaches from the engineering and material sciences, which will be applied to a biological problem that has attracted the interest of scientists for over 180 years (Curtis, 1834). This project offers a unique opportunity for two PhD students and a postdoctoral fellow to be trained in an environment that truly reflects the spirit of interdisciplinary research. The team behind this proposal already suc-cessfully collaborates in the framework of SystemsX.ch RTD project MecanX and is comprised of four internationally renowned scientists from the traditionally distant fields of plant developmental biology, mechanical engineering, material science, mathematical modelling, and nanotechnology.
-