Project

Back to overview

Mantle control and surface expressions of continental destabilization processes - 3D coupled modelling of plume-lithosphere interaction, break-up, to long-term passive margin evolution

English title Mantle control and surface expressions of continental destabilization processes - 3D coupled modelling of plume-lithosphere interaction, break-up, to long-term passive margin evolution
Applicant Gerya Taras
Number 166063
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.04.2016 - 31.10.2017
Approved amount 168'450.00
Show all

All Disciplines (2)

Discipline
Geophysics
Geology

Keywords (5)

mantle plume; surface processes; continental breakup; delamination; numerical modeling

Lay Summary (German)

Lead
Das Auseinanderbrechen von Kontinenten führt zu charakteristischer Topographie, Fluss- und Ablagerungsbildern, Bruchmustern, und seismischer Aktivität. Dieser oberste, krustale Ausschnitt des Kontinents ist jedoch klein, und komplexe Tiefenprozesse, bezeugt durch lokale magmatische Aktivität, wirken destabilisierend. Aktuelle Forschungsergebnisse zeigen dass die Interaktion von Platte und Erdmantel über einen längeren Zeitraum eine bedeutende Rolle spielt. Rapides Aufsteigen heissen Mantels (sog. “plumes”) kann besonders zur Destabilisierung führen und das Aufbrechen der Platte oder die Entfernung des lithosphärischen Mantels befördern.
Lay summary

Das Projekt behandelt die grossräumige Extension von Kontinenten  in Interaktion mit dem Mantel, sowie das kleinerräumige oberflächennahe Erscheinungbild, ähnlich wie der Feldforschung zugänglich. Es baut auf einer Verzahnung eines thermomechanischen Modells mit einem Landschaftsentwicklungsmodell auf, um die geodynamische Entwicklung von Platte und Mantel im Grossen und der Krusten- und Oberflächendynamik im Kleinen in sich stimmig innerhalb ein und desselben numerischen Experiments zu untersuchen

Ziele sind: 1) das Grundlagenverständnis für Zusammenspiel und  Resonanzmechanismen von Mantel, Lithosphärenplatte, und Oberfläche für generelle Extension zu verbessern; 2) Unterschiede auf verschiedenen Beobachtungebenen im Falle extern angelegter bzw. intern resultierender Extension zu explorieren; 3)  Beiträge von plumes zum Aufbrechen und zum sedimentären, magmatischen, und geomorphologischen Erscheinungsbild zu verstehen; 4) anhand der Langzeitentwicklung im Stadium passiver Kontinentalränder Entwicklung und Migration von langlebigen Steilstufen (rift escarpments) zu untersuchen, sowie mit vereinfachten Oberflächenmodellen zu vergleichen.

Direct link to Lay Summary Last update: 07.04.2016

Lay Summary (English)

Lead
Continental break-up leads to characteristic, evolving patterns in topography, fluvial- and depositional, faulting, and seismicity patterns. Beyond this limited crustal excerpt, deeper processes, as testified by local magmatic activity, play a major role in continental destabilization. Recent results indicate that the long-term mantle-lithosphere interaction, in particular as plumes, bears high potential for destabilization, initiation of rifting, or the removal of mantle lithosphere (delamination).
Lay summary

The project numerically targets large-scale extension and destabilization of continents in interaction with the mantle, and the corresponding local near-surface expressions. It builds on earlier coupling of thermomechanical and landscape evolution models. In this approach, both geodynamic evolution of plate and upper mantle, and crustal and surface dynamics, are modelled self-consistently within one and the same experiment.

The objectives are: 1) to advance the understanding for interaction and feedback mechanisms between mantle, lithosphere, and surface, under extension; 2) to explore differences observable at different scales between far-field and internal destabilization and extension scenarios; 3) to track the contributions of mantle plumes to rifting and to magmatic, sedimentary, and geomorphological appearance; 4) on the basis of long-term model evolution, to passive margin stage, to study development and migration of long-lived rift escarpments, and to compare predictions to simpler kinematic landscape evolution models.

Direct link to Lay Summary Last update: 07.04.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Continental crust formation on early Earth controlled by intrusive magmatism
Rozel A.B. Golabek G.J. Jain C. Tackley P.J. Gerya T. (2017), Continental crust formation on early Earth controlled by intrusive magmatism, in Nature, 545, 332-335.
Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth
Chowdhury P. Gerya T. Chakraborty S. (2017), Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth, in Nature Geoscience, 10, 698-703.
Stratigraphic Signatures of forearc basin formation mechanisms. Geochemistry, Geophysics, Geosystems
Mannu U. Ueda K. Willett S. D. Gerya T. V. Strasser M. (2017), Stratigraphic Signatures of forearc basin formation mechanisms. Geochemistry, Geophysics, Geosystems, in Geochemistry, Geophysics, Geosystems, 18, 2388-2410.
Impact of sedimentation on evolution of accretionary wedges: insights from high‐resolution thermo‐mechanical modeling
Mannu U. Ueda K. Willett S.D. Gerya T. V. Strasser M. (2016), Impact of sedimentation on evolution of accretionary wedges: insights from high‐resolution thermo‐mechanical modeling, in Tectonics, 35, 2828-2846.

Collaboration

Group / person Country
Types of collaboration
Prof. Oguz Gögüs/Istanbul Technical University Turkey (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. David May/University of Oxford Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Sumit Chackraborty/Ruhr University Bochum Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Awards

Title Year
Best reviewer for Nature journals 2016

Associated projects

Number Title Start Funding scheme
149252 Delamination dynamics in collisional orogens: 3-D thermomechanical modelling coupled with surface processes 01.03.2014 Project funding

Abstract

Recent geodynamic studies revealed a critical role of plume-induced processes for initiation of continental rifting and breakup and destabilization of cratonic roots by lithospheric delamination. It has also been demonstrated that plume-lithosphere and generally mantle-lithosphere interactions are intrinsically three-dimensional, strongly evolve with time, and have distinct non-stationary topography expressions. These interactions should also be strongly affected by erosion, sedimentation and plume-induced volcanism and crustal growth, due to intrinsic feedbacks existing between deep lithospheric deformation and crustal and surface evolution. However, so far mantle-lithosphere interactions have never been investigated by means of 3D thermo-mechanical geodynamic modeling coupled to surface process models, which creates an obvious gap both in understanding of these phenomena and relating surface observables to underlaying geodynamic processes. Geological questions pertaining to mantle-lithosphere-surface interactions, such as the origin of long-lived, high-relief escarpments at passive-margins, should be addressed from such an integrated perspective. In our previous SNF-funded project we developed a new high-resolution 4D (space-time) geomorphological-thermo-mechanical numerical modeling tool I3ELVIS-DAC and successfully applied it for a range of geodynamic processes including lithospheric collision and post-collisional delamination processes. With this project we aim to close the gap in our understanding of mantle-lithosphere-surface interactions by applying this new numerical tool for investigating key geodynamic scenarios associated with various types of plume-induced tectono-magmatic processes under conditions of both stressed and stress-free continental lithosphere. We will focus on fingerprinting of deep crustal and lithospheric processes by surface evolution and systematically compare numerical predictions to available natural observations, in particular new quantitative measures of fluvial network disequilibrium, for key continental settings affected by various modes of mantle-lithosphere interaction. The project requires skills on an experienced Post-Doctoral level. We request funds for 2.5 years for one Post-Doc, research costs involved with this position, and resources for the exchange with key scientists in form of a workshop.
-