Topological Insulators; muon spin spectroscopy; Dirac materials; soft x-ray ARPES; Spintronic Devices; Interface Phynomena
Meley H., Tran M., Teyssier J., Krieger J. A., Prokscha T., Suter A., Salman Z., Viret M., Marel D. van der, Gariglio S. (2021), Strain tuning of interorbital correlations in LaVO3 thin films, in
Phys. Rev. B, 103, 125112.
Sessi Paolo, Fan Feng-Ren, Kuster Felix, Manna Kaustuv, Schroter Niels B. M., Ji Jing-Rong, Stolz Samuel, Krieger Jonas A., Pei Ding, Kim Timur K., Dudin Pavel, Cacho Cephise, Widmer Roland, Borrmann Horst, Shi Wujun, Chang Kai, Sun Yan, Felser Claudia, Parkin Stuart S. P. (2020), Handedness-dependent quasiparticle interference in the two enantiomers of the topological chiral semimetal PdGa, in
Nature Communications, 11(1), 3507-3507.
Krieger Jonas A., Pertsova Anna, Giblin Sean R., Döbeli Max, Prokscha Thomas, Schneider Christof W., Suter Andreas, Hesjedal Thorsten, Balatsky Alexander V., Salman Zaher (2020), Proximity-Induced Odd-Frequency Superconductivity in a Topological Insulator, in
Physical Review Letters, 125(2), 026802-026802.
Schröter Niels B. M., Stolz Samuel, Manna Kaustuv, de Juan Fernando, Vergniory Maia G., Krieger Jonas A., Pei Ding, Schmitt Thorsten, Dudin Pavel, Kim Timur K., Cacho Cephise, Bradlyn Barry, Borrmann Horst, Schmidt Marcus, Widmer Roland, Strocov Vladimir N., Felser Claudia (2020), Observation and control of maximal Chern numbers in a chiral topological semimetal, in
Science, 369(6500), 179-183.
Strocov V.N., Lev L.L., Kobayashi M., Cancellieri C., Husanu M.-A., Chikina A., Schröter N.B.M., Wang X., Krieger J.A., Salman Z. (2019), k-resolved electronic structure of buried heterostructure and impurity systems by soft-X-ray ARPES, in
Journal of Electron Spectroscopy and Related Phenomena, 236, 1-8.
Schröter Niels B. M., Pei Ding, Vergniory Maia G., Sun Yan, Manna Kaustuv, de Juan Fernando, Krieger Jonas. A., Süss Vicky, Schmidt Marcus, Dudin Pavel, Bradlyn Barry, Kim Timur K., Schmitt Thorsten, Cacho Cephise, Felser Claudia, Strocov Vladimir N., Chen Yulin (2019), Chiral topological semimetal with multifold band crossings and long Fermi arcs, in
Nature Physics, 15(8), 759-765.
Kramer K. P., Horio M., Tsirkin S. S., Sassa Y., Hauser K., Matt C. E., Sutter D., Chikina A., Schröter N. B. M., Krieger J. A., Schmitt T., Strocov V. N., Plumb N. C., Shi M., Pyon S., Takayama T., Takagi H., Adachi T., Ohgi T., Kawamata T., Koike Y., Kondo T., Lipscombe O. J., Hayden S. M., et al. (2019), Band structure of overdoped cuprate superconductors: Density functional theory matching experiments, in
Physical Review B, 99(22), 224509-224509.
Lidig Christian, Minár Jan, Braun Jürgen, Ebert Hubert, Gloskovskii Andrei, Krieger Jonas A., Strocov Vladimir, Kläui Mathias, Jourdan Martin (2019), Surface resonance of thin films of the Heusler half-metal Co2MnSi probed by soft x-ray angular resolved photoemission spectroscopy, in
Physical Review B, 99(17), 174432-174432.
Das P K, Di Sante D, Cilento F, Bigi C, Kopic D, Soranzio D, Sterzi A, Krieger J A, Vobornik I, Fujii J, Okuda T, Strocov V N, Breese M B H, Parmigiani F, Rossi G, Picozzi S, Thomale R, Sangiovanni G, Cava R J, Panaccione G (2019), Electronic properties of candidate type-II Weyl semimetal WTe 2 . A review perspective, in
Electronic Structure, 1(1), 014003-014003.
Krieger J. A., Ou Y., Caputo M., Chikina A., Doebeli M., Husanu M-A, Keren I, Prokscha T., Suter A., Chang Cui-Zu, Moodera J. S., Strocov V. N., Salman Z. (2019), Do topology and ferromagnetism cooperate at the EuS/Bi2Se3 interface?, in
Physical Review B, 99(6), 064423.
Horio M., Hauser K., Sassa Y., Mingazheva Z., Sutter D., Kramer K., Cook A., Nocerino E., Forslund O. K., Tjernberg O., Kobayashi M., Chikina A., Schröter N. B. M., Krieger J. A., Schmitt T., Strocov V. N., Pyon S., Takayama T., Takagi H., Lipscombe O. J., Hayden S. M., Ishikado M., Eisaki H., Neupert T., et al. (2018), Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates, in
Physical Review Letters, 121(7), 077004-077004.
Duffy L. B., Steinke N.-J., Krieger J. A., Figueroa A. I., Kummer K., Lancaster T., Giblin S. R., Pratt F. L., Blundell S. J., Prokscha T., Suter A., Langridge S., Strocov V. N., Salman Z., van der Laan G., Hesjedal T. (2018), Microscopic effects of Dy doping in the topological insulator Bi2Te3, in
Physical Review B, 97(17), 174427-174427.
Krieger Jonas A., Kanigel Amit, Ribak Amit, Pomjakushina Ekaterina, Chashka Khanan B., Conder Kazimierz, Morenzoni Elvezio, Prokscha Thomas, Suter Andreas, Salman Zaher (2018), Superconducting Properties of Cu Intercalated Bi2Se3 Studied by Muon Spin Spectroscopy, in
Proceedings of the 14th International Conference on Muon Spin Rotation, Relaxation and Resonance (μS, Sapporo, JapanJPS, Japan.
Krieger J. A., Chang Cui-Zu, Husanu M.-A., Sostina D., Ernst A., Otrokov M. M., Prokscha T., Schmitt T., Suter A., Vergniory M. G., Chulkov E. V., Moodera J. S., Strocov V. N., Salman Z. (2017), Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators, in
Physical Review B, 96(18), 184402-184402.
Di Sante Domenico, Das Pranab Kumar, Bigi C., Ergönenc Z., Gürtler N., Krieger J. A., Schmitt T., Ali M. N., Rossi G., Thomale R., Franchini C., Picozzi S., Fujii J., Strocov V. N., Sangiovanni G., Vobornik I., Cava R. J., Panaccione G. (2017), Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe2, in
Physical Review Letters, 119(2), 026403-026403.
The class of Dirac materials (DMs) including, apart from graphene, new exotic materials such as topological insulators (Bi2 Se3, Sb2 Te3, etc) and Weyl semimetals (NbAs, TaAs) are characterized by cones of linear electron dispersion in the vicinity of the Fermi level. Doping these materials with magnetic impurities opens a gap between the Rashba bands in otherwise time-inversion protected zero-momentum point. One of the hopes of solid-state physics in this field is to discover a system where the magnetic doping shifts this gap to the Fermi level. In this case the spin orientation becomes locked to the electron momentum, resembling the so-called Majorana fermions. With potential applications of such systems varying from magnetic transport to superconductivity, this anticipated discovery will immediately revolutionize the whole field of spintronics, pushing it from its present fundamental research domain to practical realization of spintronics devices.In this proposal, the main class of the investigated DM will be (magnetically) doped topological insulators (TIs) and their interfaces, where novel functionalities can be formed through interaction of the topologically protected surface states with impurities or different electronic states in the bulk. The focus will be on (but not limited to) the local magnetic and electronic properties of doped thin films and single crystals of TIs and Weyl semimetals, with the aim of gaining better understanding of their intriguing fundamental properties and the prospect of their spintronics applications.The DM systems will be explored with a complementary combination of low-energy muon spin relaxation (LE-µSR) and soft-X-ray ARPES (SX-ARPES) at PSI. The LE-µSR spectrometer is a worldwide unique facility which utilizes low energy (1-30 keV) spin polarized muons whose depth resolving capability coupled with high sensitivity to local magnetic fields provide a powerful tool to study local magnetic and electronic properties of buried heterostructures and impurities. The worldwide most advanced SX-ARPES facility at SLS enables direct access to a complementary aspect of buried interfaces, band dispersion resolved in electron momentum and elemental character. A multi-channel spin detector iMott enables so far unthinkable studies of spin-resolved electron dispersion in buried heterostructure and impurities systems of DMs.The complementary experimental techniques within the PSI research infrastructure combined with theory constitute the main strength of our collaborative project. It will strengthen the stand of PSI in the hot and highly competitive field of spintronics fundamentals and applications. Moreover, this will be a pioneering project combining these experimental methods, which we hope will attract potential new users for both involved facilities.