Project
Back to overview
MaCoMaOc: Convection in planetary mantles interactingwith magma oceans
English title |
MaCoMaOc: Convection in planetary mantles interactingwith magma oceans |
Applicant |
Tackley Paul
|
Number |
164337 |
Funding scheme |
Project funding
|
Research institution |
Institut für Geophysik ETH Zürich
|
Institution of higher education |
ETH Zurich - ETHZ |
Main discipline |
Geology |
Start/End |
01.11.2016 - 31.10.2020 |
Approved amount |
271'053.00 |
Show all
Keywords (3)
mantle convection; magma ocean; thermal evolution
Lay Summary (French)
Lead
|
La formation du système Terre-Lune a produit une Terre en grand partie fondue. En particulier, le manteau silicaté, actuellement solide, a sans doute été largement liquide. La cristallisation de l'océan de magma vers le haut s'est produite en quelques dizaines de millions d'années et a pu laisser un océan de magma à la base du manteau, sous la partie solide. La convection dans la partie solide du manteau, aujourd'hui à l'origine de la tectonique des plaques, a dû être très affectée à ses débuts par la présence d'océans de magma au dessus et/ou en dessous. En particulier, un mouvement vertical n'est pas forcément arrêté par les limites horizontales dans ce cas, la fusion permettant une vitesse verticale non-nulle aux bords. L'objectif de ce projet est d'étudier les conséquences de l'existence d'océans de magma sur la dynamique convective du manteau solide et son évolution à long terme, de ses débuts à nos jours.
|
Lay summary
|
La formation du système Terre-Lune a produit une Terre en grand partie fondue. En particulier, le manteau silicaté, actuellement solide, a sans doute été largement liquide. La transition de cette phase dîte d'océan de magma à la situation dans laquelle la Terre se trouve actuellement est encore mal comprise. La cristallisation de l'océan de magma vers le haut s'est produite en quelques dizaines de millions d'années et a pu laisser un océan de magma à la base du manteau, sous la partie solide. La convection dans la partie solide du manteau, aujourd'hui à l'origine de la tectonique des plaques, a dû être très affectée à ses débuts par la présence d'océans de magma au dessus et/ou en dessous. En particulier, un mouvement vertical n'est pas forcément arrêté par les limites horizontales dans ce cas, la fusion permettant une vitesse verticale non-nulle aux bords. L'objectif de ce projet est d'étudier les conséquences de l'existence d'océans de magma sur la dynamique convective du manteau solide et son évolution à long terme, de ses débuts à nos jours. Quelques questions qui nous intéressent sont : quelles sont les conditions du démarrage de la convection dans le manteau solide ? Quelle est l'efficacité du transfert thermique et chimique par la convection du manteau ? L'existence d'un océan de magma basal permet-elle de résoudre le problème de l'évolution thermique de la Terre ? La structure du manteau vue par la sismologie peut-elle être expliquée par la cristallisation fractionnée d'un océan de magma basal ?
|
Responsible applicant and co-applicants
Employees
Publications
Paz BolrãoDaniela, Timescales of chemical equilibrium between the convecting solid mantle and over-/underlying magma oceans, in
Solid Earth, se-2020-49.
Collaboration
Prof. Labrosse, Université de Lyon |
France (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication - Exchange of personnel |
Scientific events
Active participation
Title |
Type of contribution |
Title of article or contribution |
Date |
Place |
Persons involved |
American Geophysical Union Fall Meeting 2019
|
Poster
|
Reactive freezing of the basal magma ocean on Earth and other terrestrial planets
|
09.12.2019
|
San Francisco, United States of America
|
Tackley Paul; da Paz Bolrão Daniela Sofia;
|
American Geophysical Union Fall Meeting 2019
|
Poster
|
Reactive freezing of the basal magma ocean on Earth and other terrestrial planets
|
09.12.2019
|
San Francisco, United States of America
|
da Paz Bolrão Daniela Sofia;
|
American Geophysical Union Fall Meeting 2018
|
Poster
|
Thermo-compositional evolution of solid mantle bounded by magma oceans: insight from numerical simulations using a phase change boundary condition
|
10.12.2018
|
Washington D.C., United States of America
|
da Paz Bolrão Daniela Sofia; Labrosse Stéphane; Tackley Paul;
|
Nethermod: XV International Workshop on Modelling of Mantle and Lithosphere Dynamics
|
Poster
|
Numerical simulations of melting-crystallisation processes at the boundaries between magma oceans and solid mantle
|
27.08.2017
|
Putten, Netherlands
|
Labrosse Stéphane; da Paz Bolrão Daniela Sofia; Tackley Paul;
|
Awards
Outstanding Student Presentation Award, AGU Fall Meeting 2017
|
2017
|
Abstract
It is generally thought that in its earliest times the Earth was largely molten, owing to the enormous energy associated with its formation. On the basis of lunar observations, it has been proposed that the upper few hundreds of km of the mantle were initially liquid, forming what is commonly called a magma ocean. More recently, we proposed that a dense magma ocean could have existed at the bottom of the mantle (the basal magma ocean) and that the remnants of its slow crystallization could be observed a the present time in the form of the seismically detected ultra low velocity zones. The solid mantle is then formed from the crystallization of the magma oceans, upwards and downwards. Convection in the solid mantle is then the engine responsible for plate tectonics, while the mechanisms that allowed the transition from the dynamics in the magma ocean to that in the solid mantle are still largely unknown.This project aims at studying the effect of being bounded above and/or below by magma oceans on the dynamics of the solid mantle. The possibility of a solid/liquid phase change at the horizontal boundaries of the mantle changes the boundary conditions felt by the flow in the solid: whereas in classical con- vection problems a non-penetrating condition is generally applied (zero vertical velocity on the horizontal boundaries), which is based on the assumption that the vertical motion associated with mountain building is negligible compared to the horizontal motion of plates, the possibility of a vertical flow towards the surface melting as it gets to the molten region can effectively suppress the “braking” effect of the horizontal bound- ary. This effect has been studied in the context of the dynamics of the Earth’s inner core and we now plan to apply the same boundary conditions to the case of the mantle interacting with magma oceans. Preliminary studies that we have performed show that several effects are to be expected: the horizontal wavelength is widened, velocities and heat transfer are larger, and the onset of convection is facilitated. We will study these effects in a systematic manner as function of the main parameters: the Rayleigh number Ra (measuring the vigor of convection), internal heating rate H, rheology, geometry (spherical versus cartesian, aspect ratio), variations of density of chemical origin, and the parameters controlling the type of boundary conditions. Using several dynamical models taking into accounts these effects, we will specifically study the first over- turn of the crystallizing mantle during its crystallization, the onset of solid state thermal convection, and the developed regimes and their heat transfer characteristics. These results will allow us to address important questions on the dynamics of the early Earth and the different possible mantle convection regimes across geologic ages.The development of scaling laws for the thermal structure and heat transfer as function of the control parameters will allow us to construct a parameterized model for the coupled evolution of the core, the basal magma ocean and the mantle. This model will have the potential to solve the decades old problem of the thermal evolution of the Earth with a moderate evolution of the mantle and a large core cooling. Finally, we will build a model coupling the full dynamics of the solid mantle with moving boundaries to the core and the basal magma ocean in order to study the long term evolution of mantle dynamics, the formation of dense thermo-chemical piles at the base of the solid mantle by fractional crystallization of the basal magma ocean.
-