Back to overview

Environmental Atomic Force Microscope

English title Environmental Atomic Force Microscope
Applicant Churakov Sergey
Number 164017
Funding scheme R'EQUIP
Research institution Institut für Geologie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Mineralogy
Start/End 01.03.2016 - 28.02.2017
Approved amount 148'500.00
Show all

Keywords (4)

Molecular mechanism of surface reactions; Kinetiks of dissolution/precipitation ; Mineral surface reactivity; Multiscale modelling and experiment

Lay Summary (German)

Natürliche Gesteine bilden sich durch Auflösung und Wachstum von Mineralien in Grundwassern und magmatische Schmelzen. Eine modelmässige Beschreibung dieser Auflösungs- und Wachstumsprozesse ist nötig, um die gegenwertigen und zukünftigen globalen geologischen Prozesse und Umweltveränderungen vorherzusagen. Beispiele für solche Prozesse sind die Karbonatisierung bei geologischer CO2-Speicherung, Zurückhaltung von Schadstoffen durch Mineralien oder Mineralablagerungen bei geothermische Installationen.
Lay summary

Dank der Unterstützung durch das SNF - R'Equip Programm wird am Institut für Geologie der Universität Bern das modernste Rasterkraftmikroskop für Untersuchungen von Mineraloberflächen installiert. Mit Hilfe dieses Instruments können auf atomarer Skala die Änderungen von Mineraloberflächen in Echtzeit  untersucht werden. Wir werden mit diesem Instrument beobachten können wie sich einzelne Atome oder Moleküle eins nach dem anderen auf den Oberflächen an- oder ablagern. Weiter wird es möglich sein zu untersuchen wie die chemische Zusammensetzung und die Temperatur die An- und Ablagerung von Atomen oder Molekülen auf  den Oberflächen beeinflussen.

Solche experimentellen Daten sind wichtig, um theoretische Modelle für computergestützte  Simulationen zu entwickeln und zu kalibrieren. Die Computersimulationen wiederum ermöglichen es, den Einfluss der verschiedenen Parameter zu testen. Nur so kann man das Verhalten von Materialien unter geologischen Bedienungen vorhersagen und erklären. Die Kombination von Experimenten und Computersimulationen führt zu einem verbesserten Verständnis von globalen geochemischen Prozessen, wie zum Beispiel Karbonatisierung bei geologischer  CO2-Speicherung, Versauerung der Ozean, oder Mineralablagerungen bei geothermische Installationen.



Direct link to Lay Summary Last update: 19.02.2016


Group / person Country
Types of collaboration
Prof. Hermann Petrology/University of Bern; The Australian National University Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr. Nicola Döbelin (Group Skeletal Substitute Materials, RMS Foundation, Bettlach) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
- Industry/business/other use-inspired collaboration
Dr. Ch. Labbez UCB-Dijon/University of Bourgogne France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Lüttge. Mineralogy/Dep. Geoscience Uni Bremen/DE; Rice University, Huston, USA) Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel
Prof. Anneleen Foubert/University of Fribourg Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. McDonald Physics Dep./University of Surrey Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Mineralogy Conference, Rimini, Italy, September 11-15, 2016. Poster A computational study of carbonate dissolution kinetics: Grand Canonical and Kinetic Monte Carlo approaches. 11.01.2017 Rimini, Italy Churakov Sergey;
EMPG XV, ETH Zurich, Switzerland, 5-8 June 2016. Poster Monte Carlo approaches to study mineral-water interface structure and reactivity 06.06.2016 Zurich, Switzerland Churakov Sergey;


Title Date Place

Associated projects

Number Title Start Funding scheme
165548 Dissolution, growth and toxic ion uptake at phyllosilicate surfaces: Coupling atomistic interactions at the mineral-water interface with Kinetic Monte Carlo model. 01.01.2017 Project funding
156412 Detailed understanding of metal adsorption on clay minerals obtained by combining atomistic simulations and X-ray absorption spectroscopy 01.01.2015 Project funding
170738 New Ionpolisher for high-end surface preparation of composite materials 01.12.2016 R'EQUIP


This R'Equip proposal seeks 50 % matching funds for the acquisition of a multi-purpose Atomic Force Microscope (AFM) with a capability for in situ high resolution fast imaging of mineral surfaces under hydrothermal conditions. The AFM is a versatile tool for investigating both the chemical and physical properties of mineral surfaces with a spatial resolution down to a few nanometers. The high resolution experimental data obtained on the rates and mechanisms of dissolution and precipitation processes at mineral interfaces will be used to benchmark multi-scale simulation models which have been developed by the applicants. The aim of the modeling is to gain a deep mechanistic understanding of interfacial phenomena and their implications for global geochemical processes. The research topics are presented as several sub projects which can be combined in the following thematic groups: (1) Combined experimental and theoretical studies of mineral dissolution and growth under various geochemical conditions (fluid compositions, temperature, fluid transport regime, etc.). The AFM imaging of the mineral surface topography and dynamics will be interpreted based on multi-scale simulations including ab initio modeling of surface structure stability, classical mo-lecular simulations of fluid-solid interface, Kinetic Monte Carlo (KMC) and Lattice Boltzmann (LB) modeling of mineral surface dissolution/growth. Such a unique combination of experi-mental techniques and theoretical tools will lead to the development of macroscopic kinetic models for minerals dissolution-precipitation processes consistent with the reaction mecha-nisms observed at an atomistic scale.(2) Combined experimental and theoretical studies of the sorption of ions and molecules at cleaved mineral surfaces. A state-of-the-art AFM acquired for this project will enable the fast atomic scale imaging of mineral surface (adsorbent) as well as the determination of the struc-tural positions of adsorbed molecules and ions (adsorbate). Moreover, the fast scanning mode will enable the dynamics of adsorbed molecules/ions to be monitored. These experimental observations will be supported and compared with the predictions of quantum mechanical simulations. The obtained molecular level understanding of adsorption mechanisms is indis-pensable to constrain mechanistic sorption models on toxic metal uptake on mineral surfaces.(3) The combination of nano-porosity and nano-mechanical mapping of microcrystalline mate-rials has the potential to becoming a new analytical approach. This technique can deliver pa-rameters critical for the understanding of the permeability of rocks and fluid transport in nano-porous rocks. Further innovation will be the use of AFM in connection with the Ion-microprobe and laser ablation to improve the accuracy of trace elements analysis in accessory minerals.Equipped with the new AFM, the mineralogical laboratory in the Institute for Geological Sci-ences at the University of Bern will have a unique expertise within Switzerland in Earth science applications. The team has many years’ experience in AFM techniques and possesses the nec-essary experimental and modeling know-how.