Project

Back to overview

Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics

English title Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics
Applicant Kippenberg Tobias Jan
Number 164014
Funding scheme R'EQUIP
Research institution Laboratoire de photonique et mesures quantiques EPFL - STI - IEL - LPQM2
Institution of higher education EPF Lausanne - EPFL
Main discipline Microelectronics. Optoelectronics
Start/End 01.12.2015 - 30.11.2017
Approved amount 400'000.00
Show all

Keywords (5)

Photonic materials; Microresonators; dielectric etching; photonic applications; magnetron RIE

Lay Summary (German)

Lead
Das Labor für Photonik und Quanten-Messungen an der EPFL studiert optische Mikroresonatoren auf Chips. Dies sind Ringe aus Siliziumnitrit (SiN), 10-100 mal kleiner als ein menschliches Haar, die Licht auf winzige Strukturen begrenzen können. Trotz zahlreicher Fortschritte sind die Verluste in diesen integrierten Resonatoren auf dem Chip heute noch mehr als 2 Größenordnungen von den Verlustniveaus, die kristalline Resonatoren zeigen. Ein herausragendes Problem das die Güte der Resonatoren limitiert ist die Materialrauigkeit, die beim Ätzprozess entsteht. Schon kleine Oberflächenrauigkeiten stören das Licht in dem Wellenleiter und tragen zu Verlusten bei. Diese Materialrauigkeit kann mit der Anwendung einer reaktiven Ionenätzanlage (RIE) reduziert werden. Dort tragen spezielle Gase in einem pulsierendem Plasma das Material gleichmässig ab. Für die Forschung der winzigen photonischen Strukturen ist die Effizienz durch die Rauigkeit des SiN zur Zeit begrenzt.
Lay summary

In diesem Projekt wollen wir an der EPFL eine RIE Maschine etablieren die exzellente Oberflächenrauigkeit des Resonatormaterials gewährleisten kann. Um einen Durchbruch in der Forschung von Mikroresonatoren mit einer hohen Güte zu erreichen, sind optisch verlustarme glatte Oberflächen eine Schlüssellösung die es bis jetzt in diesem Feld nicht gibt.

Mit dieser Maschine werden viele Labore an der EPFL die einzigartige Gelegenheit haben, photonisch integrierte Wellenleiter mit sehr glatter Oberfläche zu fabrizieren. Für unsere Forschung bedeutet dies beispiellose Effizienz der Strukturen, die neue Grenzen in der Wissenschaft und Anwendungen der Mikroresonatoren mit hoher Güte öffnet.

Direct link to Lay Summary Last update: 08.12.2015

Responsible applicant and co-applicants

Publications

Publication
Efficient light coupling into integrated photonic devices using double inverse nano-tapers
Liu Junqiu, Raja Arslan, Pfeiffer Martin, Herkommer Clemens, Guo Hairun, Zervas Michail, Geiselmann Michael, Kippenberg Tobias, Efficient light coupling into integrated photonic devices using double inverse nano-tapers, in publication in preparation.
Highly efficient coupling of crystalline microresonators to integrated photonic waveguides
Anderson Miles, Pavlov Nicolay, Jost John, Lihachev Gregory, Liu Junqiu, Morais Tiago, Zervas Michail, Gorodetsky Michael, Kippenberg Tobias, Highly efficient coupling of crystalline microresonators to integrated photonic waveguides, in publication in preparation.
Loss characterization of ultra-smooth Si3N4 waveguides fabricated using the photonic Damascene process with reflow step
Pfeiffer Martin, Liu Junqiu, Morais Tiago, Ghadiani Bahore, Kippenberg Tobias, Loss characterization of ultra-smooth Si3N4 waveguides fabricated using the photonic Damascene process with reflow step, in publication in preparation.

Collaboration

Group / person Country
Types of collaboration
Dr. Ronald Holzwarth - Menlo Systems GmbH Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
- Industry/business/other use-inspired collaboration
Prof. Andrea Ferrari - Cambridge University Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Dr. Steve Lecompte- Neuchatel, CSEM Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Vladan Vuletic – MIT United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
University of California Santa Barbara (UCSB) United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. C. Koos - Karlsruhe Institute of Technology Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. B. Dayan - Weizmann Institute, Israel Israel (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel

Associated projects

Number Title Start Funding scheme
161573 Photonic Damascene Fabrication Process for High Q integrated SiN Photonic Circuits 01.04.2016 precoR
170752 Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics 01.01.2017 R'EQUIP
165933 Microresonators based Frequency combs: exploring temporal solitons 01.03.2017 Project funding
146823 Microresonators based Frequency combs in the visible and infrared 01.04.2013 Project funding
163387 Cavity Quantum Optomechanics with Nanomechanical Oscillators 01.12.2015 Project funding

Abstract

The growth of thin film materials is a key resource to device scale research in material science, engineering, chemistry and physics. My laboratory is studying chipscale microresonators that confine light. Despite numerous advances, the losses in integrated chipscale devices are still today - in my lab and any other laboratory in the world - more than 4 orders of magnitude away from the loss levels that optical fibers exhibit. An outstanding problem is material quality. A key problem that is encountered is that many CVD and thin film deposition techniques (also at EPFL), are using precursors with Hydrogen (such as NH3 for deposition of SiN or SiH4 for silicon dioxide). The presence of Hydrogen in the context of SiO2 is detrimental as it causes incorporation of OH defect that have both optical absorption and lead to lower electric field breakdown voltage, and cannot be simply annealed out. For research in photonic nanoscale devices, the Oxide quality has limited device performance. In order to achieve the device breakthroughs that we are targeting within my laboratory, in high Q microresonator Science, low loss optical quality materials are a key and missing requirement.With this proposal we seek to develop and establish at EPFL a platform tool (within the premises of the ICMP cleanroom user facility) that enables the growth of hydrogen free dielectrics, including SiN and SiO2. The process has already been tested by my process engineer Dr. Michael Zervas at Oxford instruments in the UK. The growth chemistry will be based on Cl based precursors, which are already a standard in the fiber optical glass industry. With these materials my laboratory (and any other lab that uses the widely employed SiO2 deposition tools) will be in the unique opportunity to work with ultra pure dielectric films, that importantly, are not commercially available. For our research this implies unprecedented devices performance that will open new frontiers in the science and applications of high Q microresonators.On going and granted funding related to SiN photonic integrated circuits:- (US) AFSOR: Temporal solitons in nano-photonic microresonators: from fundamental soliton dynamics to few cycle pulses and visible frequency combs- (US) DARPA DODOS: Chip-scale Optical Resonator Enabled Synthesizer (CORES)- (US) DARPA Pulse: Pure Microwave Radiation Extraction from Frequency Combs - PureComb- (US) DARPA QUASAR: Optical-transition clocks with micro-fabricated frequency combsfor performance beyond the standard quantum limit- (EU) FP7 Marie Curie IEF: SOLICOMB- (EU-EPFL) MC cofund: Solition physics in on chip SiN micro-resonators for frequency comb applications- (other EU) ESA: ESA-Silicon Nitride planar High-Q micro-resonator technology foe stabilisation of octave spanning optical frequency combs- (other EU) ESA: Development of compact, low phase noise, high repetition rate frequency comb sources via dispersion engineering- Rothschild Foundation: Photonic Circuits on a chip for All-Optical Quantum Networks- Hasler foundation: CHIP BASED OPTICAL FREQUENCY COMBSPending approval for funding related to SiN photonic integrated circuits:- (EU) H2020: HyperComb - Hyper-dimensional microscopy with frequency combs: enabling high-throughput imaging at the single-cell level- (US) DARPA-SCOUT-Columbia-Silicon-CHIP - Developement & Application of Silicon- Chip-Based Mid-infrared Frequency Combs- (US) DARPA SCOUT: CHIP-CARS - Optical Molecular Sniffer: micro-resonator based dual frequency comb CARS spectroscopy
-