Project

Back to overview

Interactions, Dynamics, and Functionality at Nanoscale Characterised by Confocal Laser Scanning Microscopy and Fluorescence Correlation Spectroscopy

English title Interactions, Dynamics, and Functionality at Nanoscale Characterised by Confocal Laser Scanning Microscopy and Fluorescence Correlation Spectroscopy
Applicant Palivan Cornelia
Number 163996
Funding scheme R'EQUIP
Research institution Physikalische Chemie Departement Chemie Universität Basel
Institution of higher education University of Basel - BS
Main discipline Physical Chemistry
Start/End 01.12.2015 - 30.11.2016
Approved amount 308'668.00
Show all

Keywords (9)

polymer membranes; fluorescence correlation spectroscopy; nanoreactors; fluorescence cross correlation spectroscopy; supramolecular hybrid materials; confocal laser scanning microscopy; artificial mettaloenzymes; nuclear pore complex; exported proteins

Lay Summary (French)

Lead
La spectroscopie de corrélation de fluorescence (FCS), et la spectroscopie de corrélation-croisée de fluorescence (FCCS) jouent un rôle essential pour déterminer le nombre et mouvements des molécules, biomolécules et nanoparticules dans des différents milieux complexes, qu’ils soient soit biologiques ou synthétiques. Ces méthodes permettent d’analyser non seulement des particules en solution, mais aussi attachées sur des surfaces (des cellules ou des matériaux complexes), et de décrire ces dernières. Le microscope confocal à balayage laser (CLSM) va apporter plus des détails concernant ces systèmes à partir des images de haute résolution.
Lay summary

Contenu et objectifs du travail de recherche

Le Département de Chimie à l’Université de Bale va acquérir le dernier type d’instrument CLSM/FCS/FCCS qui sera capable, en mode CLSM, de discerner des images des particules fluorescentes avec des dimensions à partir 140nm, allant jusqu’à 2 microns, dans des systèmes complexes, ou alors même dans des cellules. FCS et FCCS vont servir pour décrire le mouvement des particules fluorescentes et leur interactions avec d’autres molécules ou objets d’intérêt (cellules, surfaces, membranes, tubes) dans différentes conditions de température, et sur des périodes de temps plus longues. Ce nouvel instrument CLSM/FCS/FCCS, en partie financé par une subvention de SNF, est indispensable pour la recherche de haut niveau dans le domaine des sciences biologiques et nano-sciences, qui sont au cœur des directions scientifiques et stratégiques à l’Université de Bale.

Contexte scientifique et social du projet de recherche

Notre travail générera des informations inédites et essentielles quant aux mouvements et interactions des molécules dans des milieux biologiques et synthétiques complexes. L’instrument va aussi être utilisé dans des collaborations dans le cadre du Pôle de Recherche National PRN « Molecular Systems Engineering » de l’Institute Suisse de Nanoscience, ainsi qu’avec avec des partenaires industriels.


Direct link to Lay Summary Last update: 15.11.2015

Responsible applicant and co-applicants

Publications

Publication
An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery
Adrian Najer, Dalin Wu, Martin G. Nussbaumer, Geoffrey Schwertz, Anatol Schwab, Matthias C. Witschel, Anja Schäfer, François Diederich, Matthias Rottmann, Cornelia G. Palivan, Hans-Peter Beck, Wolfgang Meier (2016), An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery, in Nanoscale, 8, 14858-14869.
Asymmetric tri-block copolymer nanocarriers for controlled localization, and pH sensitive release of proteins
Daniela Vasquez, Tomaz Einfalt, Wolfgang Meier, Cornelia G. Palivan (2016), Asymmetric tri-block copolymer nanocarriers for controlled localization, and pH sensitive release of proteins, in Langmuir, 32(40), 10235-10243.
DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Arti fi cial Organelles
Juan Liu, Viktoriia Postupalenko, Samuel Lörcher, Dalin Wu, Wolfgang Meier, Cornelia G. Palivan, Mohamed Chami (2016), DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Arti fi cial Organelles, in Nano Letters, 16, 7128-7136.

Collaboration

Group / person Country
Types of collaboration
Prof. N. Bruns, Adolphe Merkle Institute Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. J. Huwyler, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Associated projects

Number Title Start Funding scheme
172604 BIOINSPIRED FUNCTIONAL PROTEIN-POLYMER SUPRAMOLECULAR NANOASSEMBLIES 01.07.2017 Project funding
146614 Reconciling Molecular and Transport Aspects of Nuclear Pore Complex Functionality: Karyopherin Binding Avidity, FG Domain Conformation and the Role of RanGTP Revisited 01.06.2013 Project funding
144354 Directed Evolution of Artificial Metalloenzymes : Towards Chemical Biology Applications 01.10.2012 Project funding
149297 Establishment of an interaction network of exported proteins in Plasmodium falciparum 01.10.2013 Project funding
131884 Nanostructured Polymers 01.10.2010 Project funding
145160 Protein polymer nanoreactors to preserve food quality 01.11.2013 NRP 69 Healthy Nutrition and Sustainable Food Production

Abstract

Fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS), and Förster resonance energy transfer (FRET) play an irreplaceable role to determine the number and movement of molecules, biological entities, and nanoparticles in biological or synthetic systems. These methods can analyze particles, not only in solution, but also attached to surfaces, inside cells, or nanoparticles. From these measurements, the number of particles, binding strength (KD), distance, surface modifications, and the speed of particles can be determined. When coupled with confocal laser scanning microscopy (CLSM), the particles can be visualized in various environments as well.We require financial support for a new state of the art CLSM/FCS/FCCS instrument in the Department of Chemistry at the University of Basel that will include all three spectroscopy modes (FCS, FCCS and FRET) as well as a high resolution confocal microscope and cell incubation platform. We strongly depend on these techniques in our on-going and future projects. This instrument will allow for resolving images of fluorescently labeled particles from the nano to micrometer size (~140 nm- 2 µm), as well as enable the long term study of particles inside growing cells. FCS and FCCS will allow for measurements of product formation and molecule localization at the site of interest, as well as allow for the determination of binding, release, and movement of particles. It will also expand our capabilities by giving us the ability to detect samples inside growing cells for extended periods of time, which was previously not possible. The new software will make data analysis and interpretation much simpler, and with models adapted for complex systems. Finally, the system is designed in a modular fashion allowing for the future upgrade with more diverse laser arrays as well as the addition of enhanced fluorescence lifetime imaging microscopy. This new state of the art CLSM/FCS/FCCS instrument will support research emphasized by the University of Basel, within the scope of “life- and nanoscience. It will ensure the international competitiveness of the research groups involved in the proposal (groups from the Department of Chemistry, Biozentrum, and the Swiss Tropical and Public Health Institute), and their collaborations within the NCCR Molecular Systems Engineering, the Swiss Nanoscience Institute, and industrial partners. Moreover, other groups from adjacent departments of the University of Basel and various industrial partners can have access based on joint projects.
-