Project
Back to overview
Sequencing, assembly, and annotation of the highly heterozygous genome of the apomictic plant Boechera divaricarpa
English title |
Sequencing, assembly, and annotation of the highly heterozygous genome of the apomictic plant Boechera divaricarpa |
Applicant |
Grossniklaus Ueli
|
Number |
163885 |
Funding scheme |
Russia
|
Research institution |
Institut für Pflanzen- und Mikrobiologie Universität Zürich
|
Institution of higher education |
University of Zurich - ZH |
Main discipline |
Genetics |
Start/End |
01.08.2016 - 31.12.2019 |
Approved amount |
233'503.00 |
Show all
All Disciplines (4)
Agricultural and Forestry Sciences |
Embryology, Developmental Biology |
Keywords (8)
highly heterozygous genome; reproduction; apomixis; genome organization; hybrid seed production; genome annotation; genome assembly; Boechera
Lay Summary (German)
Lead
|
Apomixis, die asexuelle Fortpflanzung durch Samen, kommt natürlicherweise in ungefähr 500 Pflanzen aus mehr als 40 Familien vor. Seit vielen Jahren gilt die Einführung von Apomixis in Nutzpflanzen, bei denen diese Art der Fortpflanzung nicht vorkommt, als grosses Ziel der landwirtschaftlichen Forschung. Apomixis ermöglicht die Herstellung von Klonen, also Nachkommen die genetisch identisch mit der Mutterpflanze sind. So könnte Apomixis genutzt werden, um Heterosis in Hybridpflanzen zu fixieren. Hybridpflanzen produzieren einen höheren Ertrag und sind widerstandsfähiger, aber der Effekt lässt sich nicht über mehrere Generationen aufrechterhalten. Dies wäre mittels Apomixis möglich und könnte die Landwirtschaft revolutionieren.
|
Lay summary
|
In den letzten Jahren hat die Genomforschung enorm viele Fortschritte gemacht, aber das Genom einer apomiktischen Art wurde bisher nicht sequenziert. Ziel dieses Projektes ist es, das Genom der apomiktischen Pflanzen Boechera divaricarpa komplett zu entschlüsseln, um daraus Informationen über die Evolution und die Mechanismus von Apomixis zu erhalten. Boechera ist verwandt mit Arabidopsis thaliana, der Modellpflanze der Grundlagenforschung. Obschon das Boechera Genom mit 230 Milliarden Basenpaaren für Pflanzen relativ klein ist, hat sich das Entziffern dieses Genoms als enorm schwierig herausgestellt. Dies kommt daher, dass das Genom apomiktischer Pflanzen extrem heterozygot oder sogar aneuploid sein kann. Die bioinformatischen Methoden zum Zusammensetzen von Genomen aus kleinen Sequenzstücken haben damit grosse Mühe und das Genom kann nicht assembliert werden. In dieser Schweizerisch-Russichen Kollaboration werden wir neue bioinformatische Methoden entwickeln, um dieses Problem, das für viele Organismen mit grosser Heterozygosie und nicht nur für Apomikten gilt, zu lösen. Zudem werden zusätzliche genomische Daten erhoben, zum Beispiel durch die Identifikation benachbarter Fragmente mittels neuer molekularer Ansätze, um das Assemblieren zu vereinfachen und das Genom besser zu annotieren. Das Genom einer apomiktischen Pflanze wird nicht nur neue Erkenntnisse über die Mechanismen der Apomixis ermöglichen, sondern auch Einblicke in die Evoltution von Genomen in der Absenz von sexueller Fortpflanzung gewähren. Das Projekt befasst sich mit Grundlagenforschung, aber die erwarteten Resultate könnten auch für die angewandte Forschung von Bedeutung sein. Heutzutage nutzen die meisten Subsitenzbauern keine Hybridpflanzen, da sie deren Samen nicht von Jahr zu Jahr aufbewahren können. Apomixis würde dies ermöglichen und könnte so einen wichtigen Beitrag zur Verbesserung der Lebensumstände von Kleinbauern in Entwicklungsländern leisten.
|
Responsible applicant and co-applicants
Employees
Publications
Brukhin Vladimir, Osadtchiy Jaroslaw V., Florez-Rueda Ana Marcela, Smetanin Dmitry, Bakin Evgeny, Nobre Margarida Sofia, Grossniklaus Ueli (2019), The Boechera Genus as a Resource for Apomixis Research, in
Frontiers in Plant Science, 10, 392.
Kliver Sergei, Rayko Mike, Komissarov Alexey, Bakin Evgeny, Zhernakova Daria, Prasad Kasavajhala, Rushworth Catherine, Baskar R., Smetanin Dmitry, Schmutz Jeremy, Rokhsar Daniel, Mitchell-Olds Thomas, Grossniklaus Ueli, Brukhin Vladimir (2018), Assembly of the Boechera retrofracta Genome and Evolutionary Analysis of Apomixis-Associated Genes, in
Genes, 9(4), 185-185.
Collaboration
Wicker, Thomas, University of Zurich |
Switzerland (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication - Research Infrastructure |
Szczuka, Ewa, University Maria Curie Sklodowska, Lublin |
Poland (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication |
Baskar, Ramamurthy, Indian Institute of Technology, Madras |
India (Asia) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication - Research Infrastructure |
Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University |
Russia (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication |
Mitchell-Olds, Tom, Duke University |
United States of America (North America) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication |
Lyzak, Martin, Masaryk University, Brno |
Czech Republic (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results |
Scientific events
Active participation
Title |
Type of contribution |
Title of article or contribution |
Date |
Place |
Persons involved |
Apomixis Consortium Meeting
|
Individual talk
|
Apomixis for Clonal Seed Production and Fixation of Hybrid Vigor
|
07.01.2020
|
Einbeck, but participated remotely , Germany
|
Grossniklaus Ueli;
|
Seminar at Graduate School for Bioagricultural Sciences of Nagoya University
|
Individual talk
|
The Quest for Clonal Seeds: Towards Engineering Apomixis in Maize
|
29.11.2019
|
Nagoya, Japan
|
Grossniklaus Ueli;
|
Seminar at Tokyo Science University
|
Individual talk
|
The Quest for Clonal Seeds: towards Engineering Apomixis in Crops
|
12.11.2019
|
Noda, Japan
|
Grossniklaus Ueli;
|
Seminar at KWS Saat SE
|
Individual talk
|
The Quest for Clonal Seeds - Engineering of Apomixis in Crops
|
02.05.2019
|
Einbeck, Germany
|
Grossniklaus Ueli;
|
Mendel Centre CEITEC, Masaryk University, Seminar Series Spring 2019
|
Individual talk
|
Sexual and Apomictic Development: From Biology to Genomics
|
03.04.2019
|
Brno, Czech Republic
|
Brukhin Vladimir;
|
Farewell Symposium Helmut Bäumlein, IPK Gatersleben
|
Individual talk
|
The quest for clonal seed
|
04.06.2018
|
Gatersleben, Germany
|
Grossniklaus Ueli;
|
Seminar Tsukuba University
|
Individual talk
|
Engineering Apomixis in Crops: Concepts, Progress, and Challenges in the Quest for Asexual Seeds
|
15.12.2017
|
Tsukuba, Japan
|
Grossniklaus Ueli;
|
Knowledge transfer events
Active participation
Title |
Type of contribution |
Date |
Place |
Persons involved |
KWS Saat SE: The Quest for Clonal Seeds - Engineering of Apomixis in Crops
|
Talk
|
02.05.2019
|
Einbeck, Germany
|
Grossniklaus Ueli;
|
Communication with the public
Communication |
Title |
Media |
Place |
Year |
Media relations: print media, online media
|
Porträt - Natürlich Klonen
|
Vierteljahresschrift, Naturforschende Gesellschaft in Zürich
|
German-speaking Switzerland
|
2017
|
Abstract
Apomixis, defined as the asexual reproduction of plants through seed, could become a key ‘enabling technology’ of immense benefit to agriculture, because it would enable the permanent fixation of heterosis in crop plants.A better understanding of the molecular basis of apomixis is crucial for yield increases that are required for the sustainable production of biofuels, biomaterials, fibers, food, and feed. Despite the fact that apomixis is considered as one of the key technologies for the improvement of agriculture, it is currently not known what genes control this important trait, nor has the genome of any apomictic species been sequenced (Grossniklaus et al., 2001; Bicknell & Koltunow, 2004; Koltunow & Grossniklaus, 2003, Rodriguez-Leal and Vielle-Calzada, 2012).We propose sequencing of the genome of Boechera divaricarpa, a member of the Brassicaceae (mustard family). The species Boechera divaricarpa includes both apomictic and sexual accessions. We will use the well characterized accession ES517, because it is a diploid apomict (Schranz et al., 2005), characterized by 98-100% formation of seeds with a 2:6 embryo:endosperm ratio (Aliyu, 2010), indicating apomeiosis (absence or omission of meiosis), parthenogenetic development of the unreduced (2n) egg cell, and pseudogamous fertilization of the central cell with unreduced (2n) pollen (self-fertilization).The genome size of Boechera divaricarpa is relatively small, estimated to be around 230 Mb (Oyama et al., 2008; Sharbel & Mitchell-Olds, 2001). However, due to the highly heterozygous nature of apomictic genomes, the production of a high quality draft genome is not a trivial task. Thus, in this project we will develop novel approaches and bioinformatics tools that will be generally applicable to highly heterozygous genomes as they are often found in genetically diverse outcrossing species or in asexual lineages. We will use a combination of sequencing technologies (Illumina, Pacific Bioscience) and a novel approach for genome assembly based on topological chromatin interaction (Hi-C) data (Grob et al., 2014) that permits assembling a genome up to chromosomal level without need of a detailed genetic map or the sequencing of BAC clones.B. divaricarpa is hypothesized to have arisen through hybridization between sexual B. stricta and B. holboellii. Genomic resources for both parental species are available. We will apply comparative approaches to identify apomixis-related genomic regions through a genomic comparison with the ancestral species.Apomictic B. divaricarpa likely represents a group of lines arisen through independent hybridisation events (Katama et al., 2007) and we plan to re-sequence another apomictic diploid line of B. divaricarpa in addition to our reference accession ES517. This will allow us to look into peculiarities of hybridisation events, the chromosomal organisation, and the stability of apomictic genomes.
-