Project

Back to overview

Cavity Quantum Optomechanics with Nanomechanical Oscillators

English title Cavity Quantum Optomechanics with Nanomechanical Oscillators
Applicant Kippenberg Tobias Jan
Number 163387
Funding scheme Project funding
Research institution Laboratoire de photonique et mesures quantiques EPFL - STI - IEL - LPQM2
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.12.2015 - 30.11.2018
Approved amount 489'279.00
Show all

Keywords (3)

high Q optical microresonators; nanomechanical oscillators; Cavity quantum optomechanics

Lay Summary (German)

Lead
In der «Cavity quantum optomechanics» wird die Wechselwirkung zwischen Licht und nano- bzw. mikromechanischen Oszillatoren untersucht. Erstmals ins Leben gerufen im Zusammenhang mit der Gravitationswellendetektion hat sich das Gebiet der Optomechanik zu einem sehr vielseitigen und aktiven Forschungsfeld entwickelt. Die Fähigkeit, Quantenkontrolle von einzelnen Atomen und Molekülen auf makroskopische Objekte wie mechanische Oszillatoren auszuweiten, hat Gebieten wie der Quantenoptik, MEMS/NEMS und der Photonik neuen Schub verliehen. Während fundamentale Experimente sich damit beschäftigen, das Quantenregime für verschiedene mechanische Systeme zu erreichen, zielen jüngste Forschungen mit Hilfe von mechnischen Oszillatoren mit hohen Güten auch auf konkrete Anwendungen im Bereich der Sensorik.
Lay summary

Unser Ziel ist die Kühlung eines Oszillators in den quantenmechanischen Grundzustand durch Feedback der Positionsmessung zurück an das System. Dies ist bisher weder in Experimenten mit Atomen und Ionen, noch mit mechanischen Oszillatoren gelungen, da eine sehr hohe Messrate am System erforderlich ist, die wir durch unsere hohe Kopplungsrate zwischen Photonen und Phononen sowie hohen Güten erreichen können. Des Weiteren soll der Effekt der «Quantum Back-Action», also die Beeinflussung der Schwingung des Oszillators durch den Messprozess mittels Photonen, erstmals bei Raumtemperatur beobachtet werden. Ein weiteres Ziel ist die Realisierung eines nicht-klassischen Fock-Zustands, also der gezielten Erzeugung eines einzelnen Phonons.

Mit Hilfe unserer Arbeit werden wir neue Erkenntnisse über fundamentale Grenzen von Messungen gewinnen und Konzepte für z.B. ultrapräzise Kraft-, und Massensensoren oder Wandler zwischen Wellen verschiedenster Frequenzen, etwa optische und Mikrowellen, liefern.
Direct link to Lay Summary Last update: 26.11.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Level attraction in a microwave optomechanical circuit
Bernier N. R., Tóth L. D., Feofanov A. K., Kippenberg T. J. (2018), Level attraction in a microwave optomechanical circuit, in Physical Review A, 98(2), 023841-023841.
Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics
Fedorov S.A., Sudhir V., Schilling R., Schütz H., Wilson D.J., Kippenberg T.J. (2018), Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics, in Physics Letters A, 382(33), 2251-2255.
Quantum-Limited Directional Amplifiers with Optomechanics
Malz Daniel, Tóth László D., Bernier Nathan R., Feofanov Alexey K., Kippenberg Tobias J., Nunnenkamp Andreas (2018), Quantum-Limited Directional Amplifiers with Optomechanics, in Physical Review Letters, 120(2), 023601-023601.
Elastic strain engineering for ultralow mechanical dissipation
GhadimiA. H., FedorovS. A., EngelsenN. J., BereyhiM. J., SchillingR., WilsonD. J., KippenbergT. J. (2018), Elastic strain engineering for ultralow mechanical dissipation, in Science, 1.
Nonreciprocal reconfigurable microwave optomechanical circuit
Bernier N. R., Tóth L. D., Koottandavida A., Ioannou M. A., Malz D., Nunnenkamp A., Feofanov A. K., Kippenberg T. J. (2017), Nonreciprocal reconfigurable microwave optomechanical circuit, in Nature Communications, 8(1), 604-604.
Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator
Sudhir V., Schilling R., Fedorov S. A., Schütz H., Wilson D. J., Kippenberg T. J. (2017), Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator, in Physical Review X, 7(3), 031055-031055.
Radiation and Internal Loss Engineering of High-Stress Silicon Nitride Nanobeams
Ghadimi Amir Hossein, Wilson Dalziel Joseph, Kippenberg Tobias J. (2017), Radiation and Internal Loss Engineering of High-Stress Silicon Nitride Nanobeams, in Nano Letters, 17(6), 3501-3505.
A dissipative quantum reservoir for microwave light using a mechanical oscillator
Tóth L. D., Bernier N. R., Nunnenkamp A., Feofanov A. K., Kippenberg T. J. (2017), A dissipative quantum reservoir for microwave light using a mechanical oscillator, in Nature Physics, 13(8), 787-793.
Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator
Sudhir V., Wilson D. J., Schilling R., Schütz H., Fedorov S. A., Ghadimi A. H., Nunnenkamp A., Kippenberg T. J. (2017), Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator, in Physical Review X, 7(1), 011001-011001.
On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator
Javerzac-Galy C., Plekhanov K., Bernier N. R., Toth L. D., Feofanov A. K., Kippenberg T. J. (2016), On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator, in Physical Review A, 94(5), 053815-053815.
Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing
Schilling R., Schütz H., Ghadimi A. H., Sudhir V., Wilson D. J., Kippenberg T. J. (2016), Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing, in Physical Review Applied, 5(5), 054019-054019.

Datasets

Data for article "Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator"

Author Sudhir, Vivishek
Persistent Identifier (PID) 10.5281/zenodo.854557
Repository ZENODO


Data for the article "Elastic strain engineering for ultralow mechanical dissipation"

Author Ghadimi, Amir
Persistent Identifier (PID) 10.5281/zenodo.1202322
Repository ZENODO


Radiation and Internal-Loss Engineering of High-Stress Silicon Nitride Nanobeams

Author Ghadimi, Amir
Persistent Identifier (PID) 10.1021/acs.nanolett.7b00573
Repository ZENODO


Data and code for figures in "Level attraction in a microwave optomechanical circuit"

Author Bernier, Nathan
Persistent Identifier (PID) 10.5281/zenodo.1322026
Repository ZENODO


Data and code for figures in "Nonreciprocal reconfigurable microwave optomechanical circuit"

Author Bernier, Nathan
Persistent Identifier (PID) 10.5281/zenodo.816171
Repository ZENODO


Data and code for figures in "A dissipative quantum reservoir for microwave light using a mechanical oscillator"

Author Toth, Daniel
Persistent Identifier (PID) 10.5281/zenodo.545822
Repository ZENODO


Collaboration

Group / person Country
Types of collaboration
Cambridge University Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
IBM Zurich - Dr. Paul Seidler Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
- Industry/business/other use-inspired collaboration

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media One string to rule them all International 2018
Media relations: print media, online media One-way track for microwaves based on mechanical interference International 2017
Media relations: print media, online media Quantum reservoir for microwaves International 2017
Media relations: print media, online media Quantum states of light generated by a nanomechanical oscillator International 2017

Awards

Title Year
Zeiss Research Award For pioneering work in the field of cavity optomechanics and microresonator-based optical frequency combs 2018
Frontiers of Nanomechanical Systems conference poster award For poster entitled "Ground State Cooling of High Frequency Mechanical Oscillator". The prize was sponsored by Nature Nanotechnology journal. 2017
Thesis Prize at EPFL Photonics doctoral school For his work on Quantum Limits on Measurement and Control of a Mechanical Oscillator 2017
Wilhelmy Klung Research Prize in Physics For research on the interaction of laser light with micro- and nanomechanical systems 2015

Associated projects

Number Title Start Funding scheme
143404 Resonator Quanten Optomechanik 01.12.2012 Project funding
170752 Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics 01.01.2017 R'EQUIP
170750 Advanced electron beam lithographic tool for nanoscale electronic and photonic devices 01.12.2018 R'EQUIP
177016 Low-vibration UHV closed cycle cryostat for quantum optomechanics research 01.06.2018 R'EQUIP
182103 Cavity Quantum Optomechanics with Nanomechanical Oscillators 01.12.2018 Project funding
143404 Resonator Quanten Optomechanik 01.12.2012 Project funding
164014 Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics 01.12.2015 R'EQUIP

Abstract

Cavity quantum optomechanics studies the interaction of light with micro- and nanomechanical oscillators. First studied in the context of gravity wave detection, cavity optomechanics has in the past decade evolved into a mature and active research field at the forefront of Atomic and Molecular Physics. The ability to extend quantum control from atoms, ions and molecules to engineering mechanical oscillators has given new impetus to quantum optics, NEMS/MEMS and photonics alike. While early work in optomechanics has in particular focused on achieving the quantum regime of mechanical systems, recent work has established low loss mechanical oscillators (with low decoherence rate) also as valuable resource for new functionality. Recent work has for instance demonstrated the ability of optomechanical systems as sensors for force, mass, charge or as transducers or converters between vastly different frequencies such as microwave and optical domain, as tools to measure RF field with optical techniques, or as quantum limited amplifiers of microwave fields. Experiments at EPFL have in particular focused in recent years on developing optomechancial systems based on nanomechanical oscillators with exceptionally low thermal decoherence rate and in advancing the ability to resolve the oscillators position in ‘real time’. Recent advances have culminated in measuring mechanical oscillators with a measurement rate approaching the thermal decoherence rate; a basic primitive for implementing real time quantum feedback on nanomechechanical systems. The present proposal aims at demonstrating real time quantum feedback for demonstrating suppression of quantum backaction and preparation of an oscillator in the quantum ground state by measurement based feedback; in contrast to the previously employed autonomous feedback. Indeed so far no experiments, neither using mechanical systems nor atoms or trapped ions, have been able to us measurement feedback schemes for ground state cooling, due to the stringent requirement to track a systems position on the timescale of its evolution. Recent advances in our group of realizing unity vacuum optomechanical coupling rate’s in near field coupled nanomechanical oscillators have opened the opportunity of realizing such measurements. We aim to verify the cooling via sideband thermometry. The developed system also enables to realize a further paradigm in quantum measurements; the observation of radiation pressure quantum backaction at room temperature. It thereby enables to access a regime in a room temperature table top experiments, that has been of interest in the context of gravity wave detection and which should lead to pondermotive squeezing of the light field.A second focus of the present proposal is to realize our recently proposed scheme of heralded single phonon generation experimentally. Using GHz localized radial breathing modes in a newly developed nano-optomechanical systems based on 1D photonic crystal nanobeams, in conjunction with the already existing He-3 buffer gas cooling technique that has been pioneered by EPFL, it should be possible to realize exceptionally cold and well thermalized mechanical modes. Using the not yet explored techniques of pulsed cooling it is planned to prepare with high fidelity the ground state. Moreover the system should enable to observed detailed balance; i.e. the quantum limits of sideband cooling. Finally the system, combined with single photon detection should provide an experimental platform to realize non-classical states of mechanical motion, which is a fascinating objective in the field of quantum optomechanics and directly builds on the optomechanical interactions of cooling and amplification. Both endeavors - real time quantum feedback and nonclassical state generation - rely on the existing infrastructure at EPFL and the significant expertise in He-3 low temperature experiments on the one and experience in designing and successfully overcoming the fabrication challenges of the nano-optomechanical devices, based on high Q, near field coupled nanobeams and high Q photonic crystal nanobeam cavities on the other hand.
-