Project

Back to overview

Low viscosity and no viscosity fluid dynamics in Earth's core

Applicant Jackson Andrew
Number 163163
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.10.2015 - 31.01.2020
Approved amount 320'587.00
Show all

Keywords (2)

dynamo theory; geomagnetic field

Lay Summary (German)

Lead
Wir interessieren uns dafür, welche Abläufe/Mechanismen für die Bildung von Magnetfeldern in den Planetkernen verantwortlich sind.
Lay summary
Wir interessieren uns dafür, welche Abläufe/Mechanismen für die Bildung von Magnetfeldern in den Planetkernen verantwortlich sind.
Herkömmliches Wissen meint, dass bei der Erde thermische Konvektion im Erdinnern den Prozess in Gang setzt.
Paläomagnetismus zeigt, dass erdmagnetische Polarumkehr ein universelles Merkmal ist, welches Erklärungen verlangt. Wir planen eine sorgfältige und genaue Analyse einer numerischen Simulation, die  durch einen umkehrenden, wärmegetriebenen Dynamo unter extremsten (und erdmässig ähnlichsten) Vorgabenfaktoren  geschieht, die je erforscht worden ist.  Letztendlich ist unser Ziel ein besseres Verständnis zu bekommen, wie sich Magnetfelder in Planetkörpern bilden.
Direct link to Lay Summary Last update: 28.09.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Scale separated low viscosity dynamos and dissipation within the Earth’s core
Sheyko Andrey, Finlay Christopher, Favre Jean, Jackson Andrew (2018), Scale separated low viscosity dynamos and dissipation within the Earth’s core, in Scientific Reports, 8(1), 12566-12566.
Scale separated low viscosity dynamos and dissipation within the Earth's core
Sheyko Andrey (2018), Scale separated low viscosity dynamos and dissipation within the Earth's core, in Springer Nature, 8, 12566.
Performance benchmarks for a next generation numerical dynamo modelDYNAMO PERFORMANCE BENCHMARKS
Matsui Hiroaki, Heien Eric, Aubert Julien, Aurnou Jonathan M., Avery Margaret, Brown Ben, Buffett Bruce A., Busse Friedrich, Christensen Ulrich R., Davies Christopher J., Featherstone Nicholas, Gastine Thomas, Glatzmaier Gary A., Gubbins David, Guermond Jean-Luc, Hayashi Yoshi-Yuki, Hollerbach Rainer, Hwang Lorraine J., Jackson Andrew, Jones Chris A., Jiang Weiyuan, Kellogg Louise H., Kuang Weijia, Landeau Maylis, et al. (2016), Performance benchmarks for a next generation numerical dynamo modelDYNAMO PERFORMANCE BENCHMARKS, in Geochemistry, Geophysics, Geosystems, 17(5), 1586-1607.

Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Von der Umpolung der Erde German-speaking Switzerland 2018
New media (web, blogs, podcasts, news feeds etc.) Earth's magnetic field under the "simulation magnifying glass" International 2016

Associated projects

Number Title Start Funding scheme
165641 Understanding planetary magnetic fields from theoretical, numerical and analogue models 01.10.2017 Project funding

Abstract

Our interest is in the mechanisms responsible for magnetic field generationin planetary cores. Conventional wisdom holds that for the Earth, thermal convection is the process at work. Palaeomagnetism shows that reversals are a ubiquitous feature requiring explanation and we plan a thorough analysis of a reversing thermally-driven dynamo in the most extreme (and Earth-like) parameter regime yet explored. We also wish to examine the dynamo capabilities of a new asymptotic regime for the core, namely one in which inertia and viscosity are neglected at first order, which is another approach that can bring us towards a representative (and probably most-realistic) representation of the dynamics of the core. We plan to examine two aspects of this new regime of dynamos: firstly, how do quantities of interest (such as magnetic and kinetic energies) scale with the control parameters in the regime where the field is of stable polarity; secondly, in the more highly-forced regime where reversals occur, what are the characteristics of the reversals, how do they initiate and what sets their time scales? Ultimately our aim is a better understanding of magnetic field generation in planetary bodies.
-