Project

Back to overview

Investigation of the quantum and vortex phases of CeCoIn5 at ultra-low temperatures

English title Investigation of the quantum and vortex phases of CeCoIn5 at ultra-low temperatures
Applicant Bartkowiak Marek
Number 162671
Funding scheme Project funding (Div. I-III)
Research institution Labor für Entwicklung und Methoden Forschung mit Neutronen und Myonen Paul Scherrer Institut - PSI
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.02.2017 - 31.03.2021
Approved amount 281'343.00
Show all

Keywords (5)

unconventional superconductivity; vortex dynamics; quantum phase transition; vortex lattice; quantum criticality

Lay Summary (German)

Lead
Materialien mit starken Elektronenwechselwirkungen (Korrelationen) zeigen immer wieder aufs Neue faszinierende und unerwartete Eigenschaften und Ordnungsphänomene. Unser Verständnis der ihnen zu Grunde liegenden Prozesse und deren theoretischen Beschreibung stoßen regelmäßig an ihre Grenzen.Stark korrelierte Elektronensysteme stellen damit ein faszinierendes Forschungsfeld zum Erproben neuer theoretischer Erkärungsmodelle und mathematischer Konzepte dar.
Lay summary

Inhalt und Ziel des Forschungsprojekts:

 Innerhalb dieses Forschungsprojekt wollen wir Eigenschaften der supraleitenden Phasen von CeCoIn5 detailliert untersuchen. Die starken Korrelationen der Elektronen in diesem Material führen zu einem supraleitenden Grundzustand, der als unkonventionell bezeichnet wird. Das heißt, er kann bezüglich seiner Symmetrie, sowie der Art der Wechselwirkung, die zur Supraleitung führt, nicht mit der konventionellen Theorie der Supraleitung (BCS-Theorie) beschrieben werden. Darüber hinaus findet sich in CeCoIn5 eine weitere supraleitende, magnetische Phase wobei beide Ordnungsphänomene sich gegenseitig zu stabilisieren scheinen, eine Tatsache die der konventionellen Theorie widerspricht. Ziel des Projektes ist es die Eigenschaften beider supraleitender Phasen sowie die Natur des Phasenübergangs zwischen beiden im Detail zu untersuchen und zu charakterisieren. Hierfür sollen Ultraschalluntersuchungen verwendet und weiterentwickelt werden.

 Wissenschaftliche und gesellschaftliche Relevanz:

 Das Projekt soll einen Beitrag zu unserem Verständnis von Systemen mit komplexen Ordnungsparametern leisten. Es soll neue theoretisch Modelle motivieren und ihnen als Referenzpunkt dienen.

Direct link to Lay Summary Last update: 13.01.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Evolution of Magnetic Order from the Localized to the Itinerant Limit
Mazzone D. G., Gauthier N., Maimone D. T., Yadav R., Bartkowiak M., Gavilano J. L., Raymond S., Pomjakushin V., Casati N., Revay Z., Lapertot G., Sibille R., Kenzelmann M. (2019), Evolution of Magnetic Order from the Localized to the Itinerant Limit, in Physical Review Letters, 123(9), 097201-097201.

Collaboration

Group / person Country
Types of collaboration
Eric Bauer, Joe D. Thompson,Condensed Matter and Magnet Science, Los Alamos National Laboratory, United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Daniel Gabriel Mazzone, Paul Scherrer Institut Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Sergei Zherlitsin, Helmhotz-Zentrum Dresden-Rossenforf Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
PSI Condensed Matter Retreat Poster The sound of the Q-phase in CeCoIn5 29.10.2019 Windisch, Switzerland Tartarotti Maimone Damaris;
PSI COndensed Matter Retreat Talk given at a conference Antiferromagnetic domain selection driven by spin-orbit coupling inNdxCe1−xCoIn5 08.10.2019 Windisch, Switzerland Tartarotti Maimone Damaris;
Joint Annual Meeting of SPS and OPG Poster The sound of the Q-phase in CeCoIn5: an ultrasound investigation 26.08.2019 Zürich, Switzerland Tartarotti Maimone Damaris;
European Conference on Neutron Scattering Talk given at a conference Antiferromagnetic domain selection driven by spin-orbit coupling inNdxCe1−xCoIn5 30.06.2019 St Petersburg, Russia Tartarotti Maimone Damaris;
PSI Condensed Matter Retreat Poster Complex Interplay between superconductivity and magnetism in NdxCe1−xCoIn5 05.11.2018 Zürich, Switzerland Tartarotti Maimone Damaris;
Swiss Workshop on Materials with Novel Electronic Properties Poster Complex Interplay between superconductivity and magnetism in NdxCe1−xCoIn5 01.10.2018 Les Diablarets, Switzerland Tartarotti Maimone Damaris;
Fermi-NEST Talk given at a conference Exploring quantum phase transitions in Nd1−x CexCoIn5 08.06.2018 Arcachon, France Bartkowiak Marek;
Physics Department Seminar Individual talk Complex interplay between superconductivity and magnetism in Nd1−x CexCoIn5 17.05.2018 Lancaster, Great Britain and Northern Ireland Bartkowiak Marek;


Associated projects

Number Title Start Funding scheme
183330 CristallinaXTREME: X-ray Diffraction under Extreme Conditions 01.11.2019 R'EQUIP
177005 Novel Sample Environment for the µSR Spectrometer FLAME 01.11.2018 R'EQUIP
183304 Microwaves for coherent control of quantum matter and magnonic devices 01.12.2018 R'EQUIP
184983 Kondo breakdown and magnetic quantum criticality in a heavy-fermion superconductor 01.04.2019 Project funding (Div. I-III)

Abstract

Strong electronic fluctuations give rise to ground states that are governed by quantum fluctuations. In heavy-fermion systems, the strong coupling between magnetic moments and conduction electrons, and the competition between localization and itinerancy leads to novel magnetic or superconducting phases that occur in the vicinity of quantum critical points. Here we propose an in-depth study of the heavy-fermion system CeCoIn5. We have shown previously [45], that a new superconducting phase (Q-phase) emerges from an unconventional d-wave superconducting phase in a continuous quantum phase transition. We found evidence that this phase contains a spatially-modulated p-wave pair density wave (PDW). This order parameter linearly couples to d-wave superconductivity and antiferromagnetic spin-density wave (SDW) order. This is the first observation of an order parameter of this kind. We propose to further explore the topology of the SDW/PDW parameter and their coupling. This will be done utilizing ultrasound attenuation measurements. It has been shown [56] that ultrasound couples to the low-level excitation present in the zero gap nodes of the superconducting order parameter. This coupling depends strongly on the relative orientation between the sound waves and the nodal direction. Moreover, the coupling provides an additional attenuation channel for the sound waves and the temperature dependence of this attenuation reflects the topology of the nodal region. The PDW proposed in [45] breaks the fourfold symmetry of the d-wave order parameter and spatially modulates the d-wave nodes in one direction. The selection of the particular direction depends on its relative orientation to the applied magnetic. Therefore, we plan ultra-high precision angular-dependent ultrasound attenuation measurements to reveal this effect. Our work will provide greater insights and will help in the development of a microscopic theory for this novel quantum state.CeCoIn5 also constitutes a unique material to study the vortex dynamics in a d-wave superconductor. The vortex lattice of CeCoIn5 has been studied extensively in the past and a wealth of phases has been found [36]. Here, we propose to investigate the pinning mechanisms present in this material. We have performed preliminary studies of the vortex flow resistance to an applied electric current. Interestingly, our data indicate that an additional pinning mechanism facilitated by domain boundaries exists. As an initial step, we will extend these studies of the vortex flow resistance. We plan to explore a larger fraction of the phase-diagram. An improved setup enabling higher densities for the driving current will enable us to access even the low temperature and low magnetic field region deep inside the superconductors phase-diagram. The high cleanness of the crystals available for the project assures weak impurity pinning. The presence of vortex lattices with different symmetry will allow us to investigate the intrinsic pinning mechanism by domain walls in great detail. At a later stage, we plan to complement our flow resistance data with measurements of the dynamic response and the local pinning potential. The results obtained in this study should provide important data for the test of theoretical concepts on vortex dynamics in unconventional superconductors.
-