Project

Back to overview

Science of measurement from LISA Pathfinder to space-based gravitational waves observatories

English title Science of measurement from LISA Pathfinder to space-based gravitational waves observatories
Applicant Giardini Domenico
Number 162449
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Astronomy, Astrophysics and Space Sciences
Start/End 01.10.2016 - 30.09.2019
Approved amount 374'100.00
Show all

Keywords (11)

Gravitational waves; LISA Pathfinder; Space science; Science of measurement; Data analysis; LISA; ESA; Space Observatory; LPF; General relativity; Space mission

Lay Summary (German)

Lead
Gravitationswellen sind ursprünglich von der Allgemeinen Relativitätstheorie Einsteins vorausgesagt worden und sind heute einer der aktuellsten Themen in der modernen Physik. Die Wissenschaft unternimmt grosse Anstrengungen, den direkten Beweis der Gravitationswellen zu erlangen. Weltraum-basierte Detektoren die Astronomie zu revolutionieren in dem sie die Gravitationswellen als eine neue Messgrösse zur Erforschung des gesamten Universums benützen.
Lay summary

Wissenschaftlicher Kontext

Titel

Die Wissenschaft des Messens von LISA PATHFINDER bis zu den Weltraum basierten Gravitationswellen-Observatorien

Einleitung

Gravitationswellen sind ursprünglich von der Allgemeinen Relativitätstheorie Einsteins vorausgesagt worden und sind heute einer der aktuellsten Themen in der modernen Physik. Die Wissenschaft unternimmt grosse Anstrengungen, den direkten Beweis der Gravitationswellen zu erlangen. Weltraum-basierte Detektoren die Astronomie zu revolutionieren in dem sie die Gravitationswellen als eine neue Messgrösse zur Erforschung des gesamten Universums benützen.

Wissenschaftlicher Kontext

Die European Space Agency (ESA) hat "The Gravitational Universe" als Leitmotiv für ihre dritte Grossmission (Large-Scale Mission L3) gewählt. LISA Pathfinder ist eine Vorgänger-Mission, welche die entscheidenden Technologien testet, die für ein Weltraum-basiertes Gravitationswellen-Observatorium verwendet werden sollen. Als einzelner Satellit beinhaltet er das Meiste der anspruchsvollen Technologien, welche als fundamental für einen erfolgreichen Betrieb von LISA (Laser Interferometer Space Antenna) betrachtet werden. Die LISA-Mission wird das erste hochempfindliche, Weltraum-gestützte GW-Observatorium sein.

Zielsetzungen

Zielsetzungen

Der erste Teil des Projektes fokusiert auf der LISA Pathfinder-Mission (LPF), welche im Dezember 2015 gestartet wird. Das Projekt wird einen wichtigen Beitrag zur Charakterisierung von den Störquellen sein, welche die Bewegungen der Testmassen im freien Fall beeinträchtigen. Der zweite Teil des Projektes ist auf den Wissenstransfer von LPF zu LISA und die Entwicklung von neuen Techniken zur Analyse der LISA-Daten fokussiert.

Schlüsselwörter

Gravitationswellen, LISA, LISA Pathfinder, LPF, ESA, General relativity, Weltraum-Mission, Gravitational Universe, Weltraum-basiertes Observatorium.

Direct link to Lay Summary Last update: 02.11.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
LISA Pathfinder platform stability and drag-free performance
Armano M., Audley H., Baird J., Binetruy P., Born M., Bortoluzzi D., Castelli E., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., de Deus Silva M., Diepholz I., Dixon G., Dolesi R., Ferraioli L., Ferroni V., Fitzsimons E. D., Freschi M., Gesa L., Gibert F., Giardini D., Giusteri R., Grimani C., et al. (2019), LISA Pathfinder platform stability and drag-free performance, in Physical Review D, 99(8), 082001-082001.
Forbush Decreases and <2 Day GCR Flux Non-recurrent Variations Studied with LISA Pathfinder
Armano M., Audley H., Baird J., Benella S., Binetruy P., Born M., Bortoluzzi D., Castelli E., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., Silva M. de Deus, Diepholz I., Dixon G., Dolesi R., Fabi M., Ferraioli L., Ferroni V., Finetti N., Fitzsimons E. D., Freschi M., Gesa L., Gibert F., et al. (2019), Forbush Decreases and <2 Day GCR Flux Non-recurrent Variations Studied with LISA Pathfinder, in The Astrophysical Journal, 874(2), 167-167.
Experimental results from the ST7 mission on LISA Pathfinder
Anderson G., Anderson J., Anderson M., Aveni G., Bame D., Barela P., Blackman K., Carmain A., Chen L., Cherng M., Clark S., Connally M., Connolly W., Conroy D., Cooper M., Cutler C., D’Agostino J., Demmons N., Dorantes E., Dunn C., Duran M., Ehrbar E., Evans J., Fernandez J., et al. (2018), Experimental results from the ST7 mission on LISA Pathfinder, in Physical Review D, 98(10), 102005-102005.
Precision charge control for isolated free-falling test masses: LISA pathfinder results
Armano M., Audley H., Baird J., Binetruy P., Born M., Bortoluzzi D., Castelli E., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., de Deus Silva M., Diepholz I., Dixon G., Dolesi R., Ferraioli L., Ferroni V., Fitzsimons E. D., Freschi M., Gesa L., Giardini D., Gibert F., Giusteri R., Grimani C., et al. (2018), Precision charge control for isolated free-falling test masses: LISA pathfinder results, in Physical Review D, 98(6), 062001-062001.
Calibrating the system dynamics of LISA Pathfinder
Armano M., Audley H., Baird J., Binetruy P., Born M., Bortoluzzi D., Castelli E., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., de Deus Silva M., Diepholz I., Dixon G., Dolesi R., Ferraioli L., Ferroni V., Fitzsimons E. D., Freschi M., Gesa L., Gibert F., Giardini D., Giusteri R., Grimani C., et al. (2018), Calibrating the system dynamics of LISA Pathfinder, in Physical Review D, 97(12), 122002-122002.
Measuring the Galactic Cosmic Ray flux with the LISA Pathfinder radiation monitor
Armano M., Audley H., Baird J., Binetruy P., Born M., Bortoluzzi D., Castelli E., Cavalleri A., Cesarini A., Cruise A.M., Danzmann K., de Deus Silva M., Diepholz I., Dixon G., Dolesi R., Ferraioli L., Ferroni V., Finetti N., Fitzsimons E.D., Freschi M., Gesa L., Gibert F., Giardini D., Giusteri R., et al. (2018), Measuring the Galactic Cosmic Ray flux with the LISA Pathfinder radiation monitor, in Astroparticle Physics, 98, 28-37.
Characteristics and Energy Dependence of Recurrent Galactic Cosmic-Ray Flux Depressions and of a Forbush Decrease with LISA Pathfinder
Armano M., Audley H., Baird J., Bassan M., Benella S., Binetruy P., Born M., Bortoluzzi D., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., Silva M. de Deus, Diepholz I., Dixon G., Dolesi R., Fabi M., Ferraioli L., Ferroni V., Finetti N., Fitzsimons E. D., Freschi M., Gesa L., Gibert F., et al. (2018), Characteristics and Energy Dependence of Recurrent Galactic Cosmic-Ray Flux Depressions and of a Forbush Decrease with LISA Pathfinder, in The Astrophysical Journal, 854(2), 113-113.
Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μHz
Armano M., Audley H., Baird J., Binetruy P., Born M., Bortoluzzi D., Castelli E., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., de Deus Silva M., Diepholz I., Dixon G., Dolesi R., Ferraioli L., Ferroni V., Fitzsimons E. D., Freschi M., Gesa L., Gibert F., Giardini D., Giusteri R., Grimani C., et al. (2018), Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μHz, in Physical Review Letters, 120(6), 061101-061101.
Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors
Armano M., Audley H., Auger G., Baird J., Bassan M., Binetruy P., Born M., Bortoluzzi D., Brandt N., Caleno M., Cavalleri A., Cesarini A., Cruise A. M., Danzmann K., de Deus Silva M., De Rosa R., Di Fiore L., Diepholz I., Dixon G., Dolesi R., Dunbar N., Ferraioli L., Ferroni V., Fitzsimons E. D., et al. (2017), Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors, in Physical Review D, 96(6), 062004-062004.
Gravitational Reference Sensor Front-End Electronics Simulator for LISA
Meshksar Neda, Ferraioli Luigi, Mance Davor, ten Pierick Jan, Zweifel Peter, Giardini Domenico (2017), Gravitational Reference Sensor Front-End Electronics Simulator for LISA, in Journal of Physics: Conference Series, 840, 012041-012041.
GRS electronics for a space-borne gravitational wave observatory
Mance D, Zweifel P, Ferraioli L, ten Pierick J, Meshksar N, Giardini D (2017), GRS electronics for a space-borne gravitational wave observatory, in Journal of Physics: Conference Series, 840, 012040-012040.
GRS vs. OMS Calibration in LISA Pathfinder Data Analysis
Meshksar Neda, Ferraioli Luigi, Mance Davor, ten Pierick Jan, Zweifel Peter, Giardini Domenico (2017), GRS vs. OMS Calibration in LISA Pathfinder Data Analysis, in Journal of Physics: Conference Series, 840, 012042-012042.
LISA Pathfinder closed-loop analysis: a model breakdown of the in-loop observables
(2017), LISA Pathfinder closed-loop analysis: a model breakdown of the in-loop observables, in Journal of Physics: Conference Series, 840, 012038-012038.
LISA Pathfinder: First steps to observing gravitational waves from space
(2017), LISA Pathfinder: First steps to observing gravitational waves from space, in Journal of Physics: Conference Series, 840, 012001-012001.
Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder
Armano M., Audley H., Auger G., Baird J. T., Binetruy P., Born M., Bortoluzzi D., Brandt N., Bursi A., Caleno M., Cavalleri A., Cesarini A., Cruise M., Danzmann K., de Deus Silva M., Diepholz I., Dolesi R., Dunbar N., Ferraioli L., Ferroni V., Fitzsimons E. D., Flatscher R., Freschi M., Gallegos J., et al. (2017), Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder, in Physical Review Letters, 118(17), 171101-171101.
Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures
Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Silva M de Deus, Desiderio D, Piersanti E, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Flatscher R, et al. (2016), Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures, in Classical and Quantum Gravity, 33(23), 235015-235015.
Sub-Femto- g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results
Armano M., Audley H., Auger G., Baird J. T., Bassan M., Binetruy P., Born M., Bortoluzzi D., Brandt N., Caleno M., Carbone L., Cavalleri A., Cesarini A., Ciani G., Congedo G., Cruise A. M., Danzmann K., de Deus Silva M., De Rosa R., Diaz-Aguiló M., Di Fiore L., Diepholz I., Dixon G., Dolesi R., et al. (2016), Sub-Femto- g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results, in Physical Review Letters, 116(23), 231101-231101.
Optimal design of calibration signals in space-borne gravitational wave detectors
Nofrarias Miquel, Karnesis Nikolaos, Gibert Ferran, Armano Michele, Audley Heather, Danzmann Karsten, Diepholz Ingo, Dolesi Rita, Ferraioli Luigi, Ferroni Valerio, Hewitson Martin, Hueller Mauro, Inchauspe Henri, Jennrich Oliver, Korsakova Natalia, McNamara Paul W., Plagnol Eric, Thorpe James I., Vetrugno Daniele, Vitale Stefano, Wass Peter, Weber William J. (2016), Optimal design of calibration signals in space-borne gravitational wave detectors, in Physical Review D, 93(10), 102004-102004.

Awards

Title Year
Space Technology Award of the American Astronautical Society for the LISA Pathfinder mission and team https://sci.esa.int/s/8ZoxvLA https://astronautical.org/2018/01/22/winners-of-2017-american-astronautical-society-awards-announced/ 2017
ESA Corporate Team Achievement Award for the LISA Pathfinder Mission 2016

Associated projects

Number Title Start Funding scheme
185051 Development and Application of Seismological Techniques for the Analysis of Gravitational Waves Signals in LISA 01.10.2019 Project funding

Abstract

Gravitational waves (GW) are one of the hottest topic in modern Physics; they are naturally predicted by Einstein’s General Theory of Relativity (GR), there are indirect proofs of their existence as the energy radiated due to GW emission from binary systems has been accurately measured, but any attempt to directly detect a GW has been vain till now. The scientific community is spending many efforts for obtaining a direct proof of the existence of gravitational waves and there is a general consent that we are going to have the first direct detection from ground-based observatories (LIGO and VIRGO) in the next few years. Ground-based detectors have a detection band limited to high frequencies (> 1 Hz) since seismic noise and Earth self-gravity gradient become stronger than GW signals at low frequencies. Space based detectors do not have such limitations and can scan the low frequency band (10^-5 - 1 Hz) where a plethora of GW sources is expected. As a consequence space-based gravitational waves observatories promise to revolutionize astronomy using gravitational waves as a new messenger for the exploration of the entire universe.We are going to face an exiting period for the space-based research on GW. On October 2015 LISA Pathfinder mission is going to be launched and on 2016 there will be the call for the selection for the third ESA Large Scale mission (L3) on the theme "The Gravitational Universe". LISA Pathfinder is a precursor mission that is going to test the critical technology involved in space based gravitational wave observatories. It incorporates in a single spacecraft most of the challenging technology that has been considered fundamental for the successful operation of the Laser Interferometer Space Antenna (LISA). LISA was a joint ESA-NASA endeavor originally selected by ESA as a cornerstone mission and planned to be launched in 2018 - 2020. Although the LISA mission is now deferred by ESA, the LISA Pathfinder mission will be completed by ESA with small contribution by NASA with launch date end September 2015. Recently (end of 2013) ESA has selected “The Gravitational Universe” as L3 science theme with expected launch date in 2034. The eLISA (evolving LISA) consortium has been created by a number of European scientific institutions in order to support the selection of a LISA-like mission at the L3 mission concept selection in 2016. The LISA mission was designed to be the first high sensitivity space-borne gravitational wave observatory. It was aiming to detect gravitational waves from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive black holes and stochastic background.The activity proposed in this project will be part of the efforts of a wide international community in paving the way to the first space-based gravitational waves observatory, the project will last three years and will involve a researcher a PhD student and an electronics engineer. The first half of the project is focused on the physical problems related to the LISA Pathfinder mission. The project will start on October 2015 in perfect synchrony with LISA Pathfinder launch date that is scheduled for the end of September 2015. LISA Pathfinder science operations will start 3 months after the beginning of the project and last 6 months, therefore the project will cover the period of LISA Pathfinder science operations (6 months) and the mission follow-up data analysis (9+ months). We will provide a fundamental contribution to some of the most important LISA Pathfinder experiments including i) Measurement of acceleration noise between 0.1 mHz and 1 Hz, ii) Measurement of dc-forces, iii) Measurement of force gradients iv) Calibration of actuators system in the control loop, v) Characterization of disturbance noise generated by different sub-systems, vi) Measurement of electrostatic sensing performance and its cross-talks and vii) Measurement of all dynamics cross-talk among different degrees of freedom.The second part of the project (20 months) is focused on the transfer of knowledge from LISA Pathfinder to LISA for the development and analysis of the experiments for the calibration of the dynamics of a space-based gravitational waves observatory. Our baseline will be the LISA concept mission but the results obtained will be exportable to any variant of the LISA-like gravitational waves observatory.
-