Project

Back to overview

Photonic Damascene Fabrication Process for High Q integrated SiN Photonic Circuits

English title Photonic Damascene Fabrication Process for High Q integrated SiN Photonic Circuits
Applicant Kippenberg Tobias Jan
Number 161573
Funding scheme precoR
Research institution Laboratoire de photonique et mesures quantiques EPFL - STI - IEL - LPQM2
Institution of higher education EPF Lausanne - EPFL
Main discipline Other disciplines of Physics
Start/End 01.04.2016 - 31.03.2019
Approved amount 444'672.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Physics
Microelectronics. Optoelectronics

Keywords (9)

integreated optics; frequency combs; optical metrology; optical telecommunication; material loss; optical sensing; silicon nitride; photonic chip; micro-fabrication

Lay Summary (German)

Lead
Integrierte photonische Schaltkreise ermöglichen Licht auf einem Chip zu leiten. Deren Technologie wurde in den letzten zwei Jahrzehnten ausgereift und wird bereits u.a. in der optischen Kommunikation eingesetzt. Heute sind drei Wellenleitertechnologien basierend auf Indiumphosphid (InP), Silizium-auf-Isolator (SOI) und Siliziumnitrid (SiN) kommerziell erhältlich. In den letzten Jahren ist SiN interessanter geworden, da SiN im Gegensatz zu SOI und InP für nichtlineare Photonik geeignet ist. Daher können regelmäßig beabstandete optische Laserlinien, die einen sogenannten Frequenzkamm bilden, direkt auf einem Chip erzeugt werden. Jedoch haben die besten Wellenleiter sehr hohe Verluste, die derzeit der limitierende Faktor für eine Vermarktung von Chip-Frequenzkämmen ist, da die aktuelle Laserquelle immer noch mehr als 1 Watt Leistung benötigt. Eine 10-fache Verringerung der optischen Verluste würde eine 100-fache Verringerung der Laserleistung ermöglichen.
Lay summary

Wir werden die wichtigsten noch offen stehenden Fabrikations und Materialverlust Herausforderungen der SiN Chips angehen: Mit einem neu entwickelten Herstellungsverfahren, das das Ätzen von SiN vermeidet, mit einer verbesserten Oberflächenrauhheit und mit Materialverbesserungen bekannt aus der Glasfaserindustrie streben wir an die Verluste wesentlich zu verbessern. Dies würde den Energieverbrauch auf ein Niveau senken, wo unsere Chips sofort verpackt und in ein kommerzielles System integriert werden können.

Der optische Frequenzkamm hat tiefgreifend Spektroskopie, Gas-Detektion und sogar Astronomie beeinflusst und könnte mit SiN zu einem Chip-Scale-Format miniaturisiert werden. Solche kompakten Frequenzkämme haben eine Vielzahl von Anwendungen in der Messtechnik, Spektroskopie sowie in der High-Speed-Telekommunikation.

Direct link to Lay Summary Last update: 10.08.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Ultralow-power chip-based soliton microcombs for photonic integration
Liu Junqiu, Raja Arslan S., Karpov Maxim, Ghadiani Bahareh, Pfeiffer Martin H. P., Du Botao, Engelsen Nils J., Guo Hairun, Zervas Michael, Kippenberg Tobias J. (2018), Ultralow-power chip-based soliton microcombs for photonic integration, in Optica, 5(10), 1347-1347.
Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins
Pfeiffer Martin H. P., Liu Junqiu, Raja Arslan S., Morais Tiago, Ghadiani Bahareh, Kippenberg Tobias J. (2018), Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins, in Optica, 5(7), 884-884.
Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides
Pfeiffer Martin Hubert Peter, Herkommer Clemens, Liu Junqiu, Morais Tiago, Zervas Michael, Geiselmann Michael, Kippenberg Tobias J. (2018), Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides, in IEEE Journal of Selected Topics in Quantum Electronics, 24(4), 1-11.
Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides
Guo Hairun, Herkommer Clemens, Billat Adrien, Grassani Davide, Zhang Chuankun, Pfeiffer Martin H. P., Weng Wenle, Brès Camille-Sophie, Kippenberg Tobias J. (2018), Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides, in Nature Photonics, 12(6), 330-335.
Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators
Pfeiffer Martin H. P., Herkommer Clemens, Liu Junqiu, Guo Hairun, Karpov Maxim, Lucas Erwan, Zervas Michael, Kippenberg Tobias J. (2017), Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators, in Optica, 4(7), 684-684.
Microresonator-based solitons for massively parallel coherent optical communications
Marin-Palomo Pablo, Kemal Juned N., Karpov Maxim, Kordts Arne, Pfeifle Joerg, Pfeiffer Martin H. P., Trocha Philipp, Wolf Stefan, Brasch Victor, Anderson Miles H., Rosenberger Ralf, Vijayan Kovendhan, Freude Wolfgang, Kippenberg Tobias J., Koos Christian (2017), Microresonator-based solitons for massively parallel coherent optical communications, in Nature, 546(7657), 274-279.
Coupling Ideality of Integrated Planar High- Q Microresonators
Pfeiffer Martin H. P., Liu Junqiu, Geiselmann Michael, Kippenberg Tobias J. (2017), Coupling Ideality of Integrated Planar High- Q Microresonators, in Physical Review Applied, 7(2), 024026-024026.

Datasets

Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators

Author Pfeiffer, Martin H. P.; Herkommer, Clemens; Liu, Junqiu; Guo, Hairun; Karpov, Maxim; Lucas, Erwan; Zervas, Michael; Kippenberg, Tobias J.
Publication date 12.06.2017
Persistent Identifier (PID) 10.5281/zenodo.806242
Repository ZENODO


Ultralow-power chip-based soliton microcombs for photonic integration

Author Liu, Junqiu; Raja, Arslan S.; Karpov, Maxim; Ghadiani, Bahareh; Pfeiffer, Martin H. P.; Du, Botao; Engelsen, Nils J.; Guo, Hairun; Zervas, Michael; Kippenberg, Tobias J.
Publication date 10.09.2018
Persistent Identifier (PID) 10.5281/zenodo.1412764
Repository ZENODO


Collaboration

Group / person Country
Types of collaboration
Karlsruhe KIT / Prof. Koos Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Graphene Research Centre, Prof. Andrea Ferrari Great Britain and Northern Ireland (Europe)
- Publication
- Exchange of personnel
MIT University / Prof. Vladan Vuletic United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Menlo Systems GmbH / Prof. Holzwarth Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
- Industry/business/other use-inspired collaboration
Columbia University, Prof. Alexander Gaeta United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Weizmann Institute, Prof. Barak Dayan Israel (Asia)
- Publication
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
School of advanced studies, Spatiotemporal complexity in nonlinear optics Poster Breathing Dissipative soliton in optical microresonators 25.09.2018 Como, Italy Lucas Erwan;
ECOC 2018 Talk given at a conference Ultralow-power chip-based soliton microcombs for photonic integration 23.09.2018 Rome, Italy Liu Junqiu;
Frontier in Optics Talk given at a conference Spatial multiplexing of soliton microcombs 17.09.2018 Washington DC, United States of America Lucas Erwan;
Keio Symposium on Microresonator Frequency Comb Talk given at a conference Ultralow-power chip-based soliton microcombs for photonic integration 03.09.2018 Yokohama, Japan Liu Junqiu;
CLEO US 2018 Talk given at a conference Spatial multiplexing of soliton microcombs 13.05.2018 San Jose, United States of America Lucas Erwan;
EFTF 2018 Talk given at a conference "Spatial multiplexing of soliton microcombs 09.03.2018 Turin, Italy Lucas Erwan;
International Symposium on Application of Laser Dynamics (ISPALD) Talk given at a conference Breathing Dissipative soliton in optical microresonators 15.11.2017 Paris, France Lucas Erwan;
EFTF/IFCS 2017 Talk given at a conference Low noise microwaves with optical microresonators 10.07.2017 Besançon, France Lucas Erwan;
CLEO Europe 2017 Talk given at a conference Breathing Dissipative soliton in optical microresonators 25.06.2017 Munich, Germany Lucas Erwan;
CLEO US 2017 Talk given at a conference Breathing Dissipative soliton in optical microresonators 15.05.2017 San Jose, United States of America Lucas Erwan;
Microwave Technology and TechniquesWorkshop (MTT) Poster Soliton-based Optical Kerr Frequency Comb for Low-noise Microwaves Generation 03.04.2017 Noordwijk, Netherlands Lucas Erwan;
WE-Heraeus-Seminar Individual talk Quantum-Limited Metrology and Sensing 05.02.2017 Bad Honnef, Germany Kippenberg Tobias Jan;
Menlo Systems OFC User Seminar Program Individual talk Microresonator-based optical frequency combs 16.11.2016 Munich, Germany Kippenberg Tobias Jan;
Frontiers in Optics (FiO) 2016 Talk given at a conference Soliton Kerr Frequency Combs on a Chip 17.10.2016 Rochester, United States of America Kippenberg Tobias Jan;
International Conf. On Applied Phisics DGAO/ICO 2016 Talk given at a conference The Science and Applications of high Q optical microresonators in frequency metrology and quantum optomechanics" 17.05.2016 Hannover, Germany Kippenberg Tobias Jan;
International Frequency Control Symposium (IFCS) Talk given at a conference Combining an ultra-narrow laser with temporal solitons in a micro-resonator for low noise microwave generation 09.05.2016 New Orleans, United States of America Lucas Erwan;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Power-efficient generation of ultrashort pulses on a chip NZZ International 2018
Media relations: print media, online media Frequency combs: on-chip integration on track NZZ International 2017
Media relations: print media, online media Optical Communication at Record-High Speed NZZ International 2017
Media relations: print media, online media Optical communication using solitons on a photonic chip NZZ International 2017

Awards

Title Year
Emil Wolf Outstanding Student Paper Award At the occasion of the conference "Frontiers in Optics (FIO)”, 16 - 20 September 2018 in Washington DC, USA, Erwan Lucas received the Emil Wolf Outstanding Student Paper Competition for his presentation entitled "Multiplexing Soliton-Combs in Optical Microresonators". 2018
ZEISS Research Award For pioneering work in the field of cavity optomechanics and microresonator-based optical frequency combs. 2018
Best student award at Lake Como School At the occasion of the summer school "Complexity In Nonlinear Photonics”, 25 - 29 September 2017 in Como, Italy, Erwan Lucas received the Best student award for obtaining the best mark at the final examination. 2017
Best student paper award at IS-PALD 2017 At the occasion of the symposium "Physics and Applications of Laser Dynamics”, 15 - 17 November 2017 in Paris, France, Erwan Lucas received the Best student paper award sponsored by Nature Photonics for his presentation entitled "Breathing soliton dynamics in passive Kerr microresonators". 2017
Fellow of the American Physical Society (APS) For his pioneering contributions to the science and applications of high Q optical micro-resonators in cavity quantum optomechanics and optical frequency metrology 2016

Associated projects

Number Title Start Funding scheme
164014 Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics 01.12.2015 R'EQUIP
128709 Monolithic optical frequency comb generators 01.11.2010 R'EQUIP
170750 Advanced electron beam lithographic tool for nanoscale electronic and photonic devices 01.12.2018 R'EQUIP
176563 Energy efficient optical frequency combs based on photonic integrated resonators and temporally structured pump light 01.05.2018 Bridge - Discovery
165933 Microresonators based Frequency combs: exploring temporal solitons 01.03.2017 Project funding
133830 Optical parametric oscillator for frequency comb generation in the mid-IR 01.08.2011 R'EQUIP
170752 Customized ultra low roughness and nanoscale profile control reactive ion cluster tool (MRIE-ICP) for fabrication of high Q integrated photonic resonators for on chip photonics, nonlinear optics and quantum optomechanics 01.01.2017 R'EQUIP
163864 Exploring Temporal Solitons in Optical Micro-resonators for Visible and Mid IR based Optical Frequency combs 01.11.2016 Russia

Abstract

Integrated photonic circuits, enable to confine light on a chip and have been developed over the past two decades into a mature technology. Today three waveguide technologies based on indium phosphide (InP), silicon on insulator (SOI) and Silicon nitride (SiN) are already commercially available. For example, Infinera Inc. uses its (active) InP based photonic circuits for optical telecommunications. Intel and IBM have developed Silicon Photonics (SiP) SOI based photonic circuits for 100 Gb/s optical transceivers. Likewise, foundries such as Lionix BV (Netherlands) have commercialized SiN waveguide technology for passive applications such as phased array radar for sattelite communication or biophotonic chips. In the last years, SiN has gained significant attention due to the fact that in contrast to SOI and InP the material is suitable for nonlinear photonics. Several major US funding initiatives by DARPA have funded work related to the ability to generate on chip-optical frequency comb sources based on SiN. Such compact, chipscale combs can have a variety of applications in metrology, timekeeping and sensing as well as telecommunication and are a disruptive technology. The applicants group at EPFL has been integral part of this development and demonstrated the first low noise SiN comb sources (T. Herr et al. Nature Photonics, 2012). The regularly spaced optical lasers lines that constitute an optical frequency comb (OFC) have profoundly impacted spectroscopy, gas sensing8, and even astronomy9,10. Jointly with KIT in Germany, we demonstrated coherent communication using a SiN photonic chip based frequency combs with data rates exceeding 1Tb/s (Nature Photonics, 2014), for which our collaborator was awarded the Baden Wuerttemberg State Prize for Applied Research (100.000 Euro). Over the past year, funded by the DARPA QuASAR and PULSE program, we have shown that on chip integrated microresonator OFCs can generate ultrashort pulses using soliton formation. This discovery has been subject of an EPFL patent in the US and Europe. Using our SiN chip technology, the applicants research group is now able to fabricate SiN photonic chips that generate from a single input laser, broadband combs with 10-100 GHz mode spacing, covering > 1000 comb lines, thereby spectrally covering all the (CWDM) telecommunication bands from 1270 nm - 1640 nm at once. This technology is useful for high-speed telecommunication testing applications, in contrast to existing products that only cover a single band. Our fabrication is based on established CMOS semiconductor technology, expanded through innovative processes, allowing us to obtain >100 photonic chips, easily scalable in cost and volume. Yet, despite a favorable patent situation and a very mature fabrication process carried out at the EPFL Micro-Nanofabrication facility (CMi), a major scientific frontier that precludes commercialization is left: optical propagation losses (due to imperfections in the material and the fabrication). While in fiber optical industry the fabrication and materials of fibre drawing have been investigated and perfected, leading to losses of only of 0.5 dB/km, the loss in SiN integrated waveguides suitable for nonlinear frequency conversion has so far remainder orders of magnitude lower. Today, the best waveguides have Q-factor typically below 10 million, which implies losses of ca. 5 dB/m (10,000-fold larger than in fibers). These losses presently are the limiting factor for a commercialization of chipscale combs and impeded the foundation of an EPFL start-up company, as the current pump laser source still needs more than 1 Watt of power. A reduction of optical losses by x10 would enable a reduction of x100 in the required power-levels. In the present precoR proposal we seek to address the major outstanding fabrication and material loss challenges of SiN photonic chips: Using a recently developed and novel fabrication process (photonic Damascene process, patent application pending by EPFL) that mitigates etching SiN, in combination with material improvements adapted from optical fiber industry standard, we aim at substantially improving the quality factor to values more than 50 million. This would not only represent the first ultra high Q on chip - a major scientific advance - but moreover reduce energy consumption to a level where our devices can be immediately packaged and integrated into a system. With such sources we will demonstrate a new chipscale comb data-record, aiming at 100 Tb/s with our collaborators at KIT/ETHZ. The aim of the precoR project is to enable after the completion of the project, a startup company. The project will take place in the CMi at EPFL.
-