Project

Back to overview

Molecular mechanisms of neuronal synapse formation

English title Molecular mechanisms of neuronal synapse formation
Applicant Scheiffele Peter
Number 160319
Funding scheme Project funding (Div. I-III)
Research institution Abteilung Zellbiologie Biozentrum Universität Basel
Institution of higher education University of Basel - BS
Main discipline Neurophysiology and Brain Research
Start/End 01.08.2015 - 31.07.2018
Approved amount 873'618.00
Show all

Keywords (3)

alternative splicing; RNA processing; synaptogenesis

Lay Summary (German)

Lead
Molekulare Mechanismen der Synapsenbildung
Lay summary
Nervensysteme haben eine beeindruckende Fähigkeit vielfältige Sinneswahrnehmungen aufzunehmen, zu integrieren und spezifische Verhalten zu initiieren. Diese Fähigkeit basiert auf der präzisen Vernetzung von Neuronen. Die Mechanismen, welche die Spezifität neuronaler Vernetzung steuern, sind bisher nur wenig verstanden. Ziel dieses Projektes ist es, mögliche Erkennungsmoleküle zu identifizieren, welche Typen von Nervenzellen markieren und dann zu der selektiven Vernetzung von Nervenzellen beitragen. Insbesondere fokussieren sich unsere Arbeiten auf den Mechanismus des Alternativen Spleissens, welcher es ermöglicht, von einem einzigen Gen viele unterschiedliche Erkennungsmoleküle zu generieren. Die Experimente werden die Hypothese testen, dass resultierende Spleissvarianten zeitlich und örtlich reguliert werden, und so zur spezifischen Vernetzung von Neuronen beitragen.
Direct link to Lay Summary Last update: 30.03.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
A Sam68‐dependent alternative splicing program shapes postsynaptic protein complexes
Witte Harald, Schreiner Dietmar, Scheiffele Peter (2019), A Sam68‐dependent alternative splicing program shapes postsynaptic protein complexes, in European Journal of Neuroscience, 49(11), 1436-1453.
Elfn1-Induced Constitutive Activation of mGluR7 Determines Frequency-Dependent Recruitment of Somatostatin Interneurons
Stachniak Tevye Jason, Sylwestrak Emily Lauren, Scheiffele Peter, Hall Benjamin J., Ghosh Anirvan (2019), Elfn1-Induced Constitutive Activation of mGluR7 Determines Frequency-Dependent Recruitment of Somatostatin Interneurons, in The Journal of Neuroscience, 39(23), 4461-4474.

Collaboration

Group / person Country
Types of collaboration
Ralf Schneggenburger/EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Fiona Doetsch/Biozentrum of the University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Michael Kiebler/LMU Munich Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Tom Mrsic-Flogel/Biozentrum of the University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Yasunori Hayashi/Riken Brain Science Institute Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
Jernej Ule/UCL Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Stephan Sigrist/Charite Berlin Germany (Europe)
- Publication

Awards

Title Year
Empiris Award for Brain Research 2016

Associated projects

Number Title Start Funding scheme
158905 RNA-based mechanisms of neuronal plasticity 01.01.2015 International short research visits
140944 Molecular Mechanisms of Neuronal Synapse Formation 01.08.2012 Project funding (Div. I-III)

Abstract

The assembly of functional neuronal circuits during development of the central nervous system requires an array of selective cell-cell interactions. These interactions direct cell migration, targeted growth and branching of axonal and dendritic processes, recognition of appropriate target cells, differentiation of pre- and postsynaptic structures, and recruitment of synapse-specific release machinery and neurotransmitter receptors. The specific synaptic connections and functional synaptic properties arising during development are fundamental to neuronal circuit function and - ultimately - animal behavior. The aim of our studies is to understand the molecular mechanisms underlying synaptic specificity programs in the central nervous system. In particular, we are focusing on how RNA-regulatory mechanisms contribute to the spatio-temporal control of neuronal gene expression to coordinate choice of synaptic partners and acquisition of the appropriate functional properties of individual synapses.
-