Project

Back to overview

Quantitative assessment of the hazard from space weather: development of new 3-D numerical tool for modelling geoelectric fields during magnetospheric substorms

English title Quantitative assessment of the hazard from space weather: development of new 3-D numerical tool for modelling geoelectric fields during magnetospheric substorms
Applicant Kuvshinov Alexey
Number 159970
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.11.2015 - 31.10.2020
Approved amount 186'707.00
Show all

Keywords (13)

geomagnetically-induced currents; magnetospheric substorm; hazards to technological systems; space weather; ground-based magnetic data; integral equations; three-dimensional models ; electric fields; electrical conductivity; prediction; ACE data; ionospheric currents; Eruptions at the Sun

Lay Summary (German)

Lead
Eruptionen an der Sonnenoberfläche setzen grosse Mengen an geladenen Teilchen frei. Deren Zusammenwirken mit dem Erdmagnetfeld in Magnetosphäre und Ionosphäre erzeugt sog. Substorms, welche sich durch ein zeitlich stark fluktuierendes Magnetfeld auszeichnen. Dieses Feld induziert Ströme in erdgebundenen Leitungssystemen wie z.B. Pipelines oder Stromnetzen. Um die Gefährdung solcher Leitungssysteme durch geomagnetisch induzierte Ströme zu quantifizieren, tut eine umfassende Modellierung des geoelektrischen Felds, das während Substorms induziert wird, not. Trotz grosser Anstrengungen im wissenschaftlichen Fachgebiet ist es bislang nicht gelungen, das Problem zufriedenstellend zu lösen. Dies liegt vor allem daran, dass bislang kein Ansatz die volle Komplexität des Problems erfasst hat, welche z.B. die Effekte einer 3-D Leitfähigkeitsverteilung in der Erde berücksichtigt. Kürzlich haben wir ein numerisches Konzept vorgelegt, welches es erstmals erlaubt, das Problem konsistent anzugehen.
Lay summary

Zusammenfassung

Eruptionen an der Sonnenoberfläche setzen grosse Mengen an geladenen Teilchen frei. Deren Zusammenwirken mit dem Erdmagnetfeld in Magnetosphäre und Ionosphäre erzeugt sog. Substorms, welche sich durch ein zeitlich stark fluktuierendes Magnetfeld auszeichnen. Dieses Feld induziert Ströme in erdgebundenen Leitungssystemen wie z.B. Pipelines oder Stromnetzen. Um die Gefährdung solcher Leitungssysteme durch geomagnetisch induzierte Ströme zu quantifizieren, tut eine umfassende Modellierung des geoelektrischen Felds, das während Substorms induziert wird, not. Trotz grosser Anstrengungen im wissenschaftlichen Fachgebiet ist es bislang nicht gelungen, das Problem zufriedenstellend zu lösen. Dies liegt vor allem daran, dass bislang kein Ansatz die volle Komplexität des Problems erfasst hat, welche z.B. die Effekte einer 3-D Leitfähigkeitsverteilung in der Erde berücksichtigt. Kürzlich haben wir ein numerisches Konzept vorgelegt, welches es erstmals erlaubt, das Problem konsistent anzugehen.

Ziele des Forschungsprojekts

Das Hauptziel des Projektes ist es, das vorgeschlagene Konzept praktisch auszuarbeiten. Als Resultate der Arbeit erwarten wir (a) ein Modell der 3-D Leitfähigkeitsverteilung der Erde, zusammengestellt mithilfe geophysikalischer Daten, und (b) eine numerische Lösung zur Berechnung des geoelektrischen Felds während Substorms.

Wissenschaftlicher und gesellschaftlicher Rahmen des Forschungsprojekts

Netzwerkbetreiber haben ein grosses Bedürfnis nach einem Werkzeug, mit dem sich die Ströme, die während Substorms in Leitungsnetzwerken induziert werden, verlässlich berechnen lassen. Des Weiteren betrachten wir das Projekt als einen ersten Schritt in Richtung einer quantitativen Vorhersage der Gefährdung durch geomagnetische Störungen.

Direct link to Lay Summary Last update: 29.04.2015

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events
Marshalko Elena, Kruglyakov Mikhail, Kuvshinov Alexey, Juusola Liisa, Kwagala Norah Kaggwa, Sokolova Elena, Pilipenko Viacheslav (2021), Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events, in Space Weather.
Exploring the Influence of Lateral Conductivity Contrasts on the Storm Time Behavior of the Ground Electric Field in the Eastern United States
Marshalko Elena, Kruglyakov Mikhail, Kuvshinov Alexey, Murphy Benjamin S., Rastätter Lutz, Ngwira Chigomezyo, Pulkkinen Antti (2020), Exploring the Influence of Lateral Conductivity Contrasts on the Storm Time Behavior of the Ground Electric Field in the Eastern United States, in Space Weather, 18(3), 1-25.
Regional 3-D Modeling of Ground Electromagnetic Field Due To Realistic Geomagnetic Disturbances
Ivannikova Elena, Kruglyakov Mikhail, Kuvshinov Alexey, Rastätter Lutz, Pulkkinen Antti (2018), Regional 3-D Modeling of Ground Electromagnetic Field Due To Realistic Geomagnetic Disturbances, in Space Weather, 16(5), 476-500.

Collaboration

Group / person Country
Types of collaboration
Space Plasma Physics Group, Department of Physics and Technology, University of Bergen, Bergen, N Norway (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Institute of Physics of the Earth, Moscow, Russia Russia (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Finnish Meteorological Institute, Helsinki, Finland Finland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Department of Physics, The Catholic University of America, Washington, DC, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Geophysical Center, Moscow, Russia Russia (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
The Johns Hopkins University Applied Physics Laboratory United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
NASA Goddard Space Flight Center, Greenbelt, MD, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Geoelectromagnetic Research Center, Institute of Physics of the Earth, Moscow, Russia Russia (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Abstract

Strong eruptions at the Sun’s surface produce large releases of matter (plasma), which, with a speed of 800-1000 km/s (the solar wind), flows into interplanetary space. Its interaction with the Earth's magnetosphere and the ionosphere leads to an abnormal disturbance of the fluctuating geomagnetic field. In the mid-latitudes, these disturbances (geomagnetic storms) last a few days and have amplitudes up to a few hundred nT. At high latitudes, the disturbances (magnetospheric substorms) last a few hours and have amplitudes up to a few thousand nT. The fluctuating geomagnetic field induces a geoelectric field that in case of intense substorms reaches hundreds of volt/km. This field generates strong geomagnetic induced currents (GIC) in the ground-based systems, such as power grids and pipelines. These currents are one of the most dangerous factors affecting the operation of the above systems. Thus, comprehensive modelling of spatio-temporal evolution of the geoelectric field during substorm activity is a key consideration in estimating the hazard to technological systems from space weather. Despite the abundance of works carried out in this direction, the problem is still very far from a satisfactory solution. This is mostly due to the fact that no approaches have been proposed, which address the problem in its full complexity, accounting, for example, for the effects of a 3-D conducting Earth. Very recently, we have developed and validated a rigorous 3-D numerical scheme aimed to model the geoelectric field induced by geomagnetic storms as realistically as possible. The scheme includes two basic steps: 1) recovery of the (large-scale) ring-current source which is responsible for geomagnetic storm; 2) modelling of the geoelectric field induced by this source, using a state-of-the-art integral equation (IE) code. The main objective of this project is to convert the proposed concept to workable tool for modelling the geoelectric field induced by magnetospheric substorms. Recovery of the spatio-temporal structure of the auroral ionospheric sources which are responsible for the substorms, is a difficult task due to the much larger variability of the source both in time and space compared with the source that is responsible for geomagnetic storm activity. Moreover, due to the higher frequency content of substorm variations, full 3-D conductivity models are required, in contrast to a thin shell model that is utilized for storm modelling. The project proposed here is self-contained and it is designed for a 3-year study leading to a PhD. The PhD student will be guided by the PI’s (PD Dr. Alexey Kuvshinov) expertise in the development of inverse and forward solutions for other, but similar applications. Expected outputs from the project are: (a) a 3-D conductivity model in polar cap in depth range of 0-100 km compiled from all relevant geophysical data; (b) a code for recovery of auroral ionospheric source; (c) a code for efficient 3-D modelling of the electric field, induced by the auroral source. Both the codes and 3-D model will be made available to the space weather and power industry communities.
-