Project

Back to overview

Physical vulnerability to torrent processes - Contributing factors and spatial analysis

English title Physical vulnerability to torrent processes - Contributing factors and spatial analysis
Applicant Keiler Margreth
Number 159899
Funding scheme Project funding (Div. I-III)
Research institution Geographisches Institut Universität Bern
Institution of higher education University of Berne - BE
Main discipline Geomorphology
Start/End 01.09.2015 - 30.11.2018
Approved amount 197'463.00
Show all

All Disciplines (2)

Discipline
Geomorphology
Other disciplines of Environmental Sciences

Keywords (5)

Risk assessment; Vulnerability; Mountain Hazards; Torrent processes; European Alps

Lay Summary (German)

Lead
Murgang- und Hochwasserereignisse verursachen in Gebirgsräumen hohe ökonomische Schäden an Gebäuden und Infrastruktur. Vulnerabilität (Schadenempfindlichkeit) beschreibt das Verhältnis zwischen der einwirkenden Prozessintensität und den möglichen Schäden an gefährdeten Objekten. Das Wissen über Vulnerabilität ist somit ein Schlüsselfaktor für die Findung geeigneter Risikoreduktionstrategien, stellt aber eine wesentliche Quelle für Unsicherheiten in der Risikobeurteilung dar. Es bestehen grosse Datenlücken, um gesicherte Aussagen zur Vulnerabilität für vergangene Ereignisse abzuleiten, insbesondere fehlen bislang Informationen zu stark beschädigten Objekten. Der Einfluss von unterschiedlichen (auch räumlichen) Faktoren auf die Vulnerabilität ist unklar.
Lay summary

Ziele des Forschungsprojekts

Das Projekt soll zu einem verbesserten Verständnis der Vulnerabilität von Gebäuden gegenüber Wildbachprozessen beitragen. Hierzu werden empirisch Vulnerabilitätsfunktionen aus vergangenen Ereignissen abgeleitet, und verfügbare Informationen zu diesen Ereignissen analysiert mit dem Ziel, auf einer bereiten Datenbasis statistische Analysen durchzuführen und Unsicherheiten aufzuzeigen. Ausserdem sollen räumliche Muster der Vulnerabilität und der beeinflussenden Faktoren erkannt werden. Somit können auf dieser Basis einfache, jedoch robuste Funktionen und Modelle entwickelt werden, die zu einer verbesserten Beurteilung von Vulnerabilität bei Wildbachprozessen beitragen.


Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Das Projekt wird zu einer Reduktion von Unsicherheiten in den bestehenden Datensätzen führen, und mittels der neu entwickelten Vulnerabilitätsfunktionen und -modelle die Risikobeurteilung für Wildbäche verbessern. Die Ergebnisse bilden eine neue und erweiterte Basis für Entscheidungen durch Behörden, Versicherungen sowie Gebäudeeigentümerinnen und -eigentümer in Hinblick auf verbesserte Risikoreduktionsstrategien.
Direct link to Lay Summary Last update: 08.09.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events
Chow Candace, Andrášik Richard, Fischer Benjamin, Keiler Margreth (2019), Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events, in Journal of Environmental Management, 246, 85-100.
Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward
Fuchs S., Keiler M., Ortlepp R., Schinke R., Papathoma-Köhle M. (2019), Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward, in Journal of Hydrology, 575, 587-595.
Short communication: A model to predict flood loss in mountain areas
Fuchs Sven, Heiser Micha, Schlögl Matthias, Zischg Andreas, Papathoma-Köhle Maria, Keiler Margreth (2019), Short communication: A model to predict flood loss in mountain areas, in Environmental Modelling & Software, 117, 176-180.
Application of Sensitivity Analysis for Process Model Calibration of Natural Hazards
Chow Candace, Ramirez Jorge, Keiler Margreth (2018), Application of Sensitivity Analysis for Process Model Calibration of Natural Hazards, in Geosciences, 8(6), 218-218.

Collaboration

Group / person Country
Types of collaboration
Institute of Mountain Risk Engineering, University of Natural Ressources and Life Sciences (BOKU) Austria (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
WSL - Institute for Snow and Avalanche Research SLF Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Geosciences Union, General Assembly 2019 Poster Using a Beta model for flood loss prediction in mountain areas 07.04.2019 Vienna, Austria Keiler Margreth;
European Geosciences Union, General Assembly 2017 Talk given at a conference Physically-based modelling of high magnitude torrent events with uncertainty quantification 23.04.2017 Vienna, Austria Chow Candace Wing-Yuen; Keiler Margreth;
European Geosciences Union, General Assembly 2017 Poster Development of structural vulnerability curve associated with high magnitude torrent occurrences in Switzerland 23.04.2017 Vienna, Austria Keiler Margreth; Chow Candace Wing-Yuen;
Swiss Geoscience Meeting, 2016 Poster Debris flow modelling: How much model complexity is needed? 18.11.2016 Genf, Switzerland Keiler Margreth; Chow Candace Wing-Yuen;
European Geosciences Union, General Assembly 2016 Poster Application of hybrid uncertainty assessment approaches to data on extremely damaging torrent events in the European Alps 17.04.2016 Vienna, Austria Chow Candace Wing-Yuen; Keiler Margreth;


Abstract

In the European Alps as well as in other mountain regions, high economic losses due to severe mountain hazard processes increased significantly in the last decades in spite of high investments in hazard management. Torrent processes, including debris flow, hyperconcentrated flow and fluvial sediment transport, are a particularly de-structive form of mountain hazards causing loss of life and considerable damages on buildings and infrastructure. This development as well as scientific findings demonstrate that risk associated with mountain hazards cannot be reduced by focusing solely on the hazardous processes. Within an integrated risk management, vulnerability is a key factor and also the main source of uncertainty in risk reduction. Vulnerability in this context is defined as a relationship between process intensity and associated loss. Currently, few studies proposed methods for an em-pirical quantification of physical vulnerability to torrent processes, nonetheless, considerable gaps still exist re-garding a lack of data for highly destructive events in all datasets, the amount of data of the individual case stud-ies as well as their comparability regarding data gathering, all factors are essential for robust statistical analysis. Moreover, only limited analysis and insights exist on best-performing intensity parameters, other main influenc-ing factors on vulnerability and possible correlation between these factors. Our knowledge about spatial compo-nents influencing vulnerability is restricted and spatial and geostatistical analyses in this context are still in their infancy. The first part of the proposed project focuses on the extension of existing studies for the empirical quantification of vulnerability to torrent processes by compiling comprehensive data on the degree of loss, process intensity, building and surrounding characteristics from five highly destructive torrents event in Switzerland. Additionally, a standardised and homogenised master-database on vulnerability data including existing case studies from Aus-tria, Italy and Switzerland will be established. Consequently using this master-database, one main focus is on deducing different vulnerability functions for the integration in mountain hazard risk analysis and highlighting the inherent uncertainties as well as possible regional differences. Further analysis using a double generalised linear model will allow us to gain further knowledge of the influence of different parameters (e.g. building characteris-tics) on the degree of loss as well as on the spread of data. The second main focus is on the analysis of spatial effects influencing the physical vulnerability concentrating on global and local autocorrelation of spatial parame-ters as well as of potential spatial clusters of degree of loss and other contributing factors. A comprehensive vali-dation procedure will allow to detect the simplest but also most robust function or model for physical vulnerability to torrent processes.The results of the proposed project will contribute to a better prediction of the risk caused by torrent events by gaining insights in inherent uncertainties as well as reducing these uncertainties by the improved database. The developed approaches and procedures for vulnerability assessment can be applied to deduce vulnerability func-tions and models for torrents in other regions as well as for other hazard processes. In respect of a broader im-pact, the new insights will be essential for developing effective and efficient risk reduction strategies.
-