Project

Back to overview

Metabolomics as part of a multi-disciplinary approach to unravel the molecular function of durable disease resistance in cereals

English title Metabolomics as part of a multi-disciplinary approach to unravel the molecular function of durable disease resistance in cereals
Applicant Bucher Rahel
Number 158657
Funding scheme Doc.Mobility
Research institution Max-Planck-Institut für Molekulare Pflanzenphysiologie
Institution of higher education Institution abroad - IACH
Main discipline Organic Chemistry
Start/End 01.03.2015 - 31.08.2015
Show all

All Disciplines (4)

Discipline
Organic Chemistry
Biochemistry
Agricultural and Forestry Sciences
Molecular Biology

Keywords (6)

Cereals (wheat, rice, barley); Fungal resistance; Metabolomics; Mass spectrometry; Gas chromatography; Leaf rust

Lay Summary (German)

Lead
Pilzbasierte Krankheitserreger beeinträchtigen den Ertrag von Getreide und verursachen jedes Jahr grosse Verluste. Weizen, der mit Reis und Mais zu den weltweit wichtigsten Nahrungspflanzen gehört, wird oft von Rostpilzen und Mehltau befallen. In Weizen gibt es natürliche, vererbbare Resistenzen gegen einige dieser Krankheitserreger. Ein Resistenzgen gegen Braunrost (genannt Lr34) wird seit mehr als 40 Jahren für die Pflanzenzüchtung verwendet und ist von grosser Bedeutung um Ernteverluste einzudämmen. Das Gen kodiert ein Transportprotein, doch der genaue molekulare Wirkungsmechanismus der Resistenz ist nicht bekannt.
Lay summary

In diesem Projekt untersuchen wir die Stoffwechselprodukte (Metaboliten) von Getreidepflanzen, um den genauen molekularen Mechanismus der Lr34-vermittelten, dauerhaften Resistenz zu charakterisieren. Um eine grössere Vielfalt von Metaboliten zu detektieren, kombinieren wir Methoden basierend auf Flüssigkeits- und Gaschromatographie gekoppelt mit Massenspektrometrie. Die Chromatographie trennt die Vielfalt der Metaboliten aufgrund ihrer physikalisch-chemischen Eigenschaften, und die Massenspektrometrie detektiert die Masse der Metaboliten. Diese mehrdimensionalen Methoden ermöglichen eine umfangreichere Charakterisierung der Pflanzenextrakte und damit die Interpretation von biochemischen Prozessen in Zusammenhang mit der Lr34 Resistenz.

Die Resultate dieser Arbeit führen zu einem besseren Verständnis der Interaktion von Weizen und krankheitserregenden Pilzen. Die Erkenntnisse zum Resistenzgen Lr34 können in der Pflanzenzüchtung vielfältig genutzt werden und können zu verbesserten Ernteerträgen und reduziertem Einsatz von Fungiziden beitragen. Die Untersuchung von Wirkungsmechanismen pflanzlicher Resistenzen ist weltweit ein sehr aktives Forschungsgebiet.

Inhalt und Ziel des Forschungsprojektes

Direct link to Lay Summary Last update: 06.01.2015

Responsible applicant and co-applicants

Publications

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Botanikertagung 2015 Poster Investigating the metabolome of Poaceae plants displaying a durable anti-fungal resistance phenotype 30.08.2015 Freising, Germany Bucher Rahel;


Associated projects

Number Title Start Funding scheme
127061 Molecular analysis of both broad-spectrum and specific fungal disease resistance in wheat 01.01.2010 Project funding
154694 Functional characterization of broad-spectrum disease resistance in cereals 01.01.2015 Ambizione

Abstract

The world’s population is estimated to rise up to 9-10 billion by the year 2050. To cover the increasing food demand, sustainable strategies are necessary to prevent substantial losses of crop yield caused e.g. by devastating fungal pathogens. One important strategic approach to enhance biotic stress resistance is the introduction of durable resistance genes in cereals. In particular Lr34, a durable multi-pathogen resistance gene found in wheat (Triticum aestivum), offers a promising route to defend crops against fungal pathogens. Lr34 confers durable resistance to the four major fungal pathogens leaf rust, stem rust, stripe rust and powdery mildew, and the gene is functionally transferable to other cereals (barley, rice, sorghum). However, the molecular resistance mechanism mediated by Lr34, which encodes for an ATP-binding cassette transporter, is still unknown.The hypothesis of my current research is that the Lr34-mediated resistance mechanism is based on the transport of a particular metabolite or a group of metabolites. To test this hypothesis and to gain a deeper understanding of the Lr34 resistance mechanism, I have so far applied a mass spectrometry (MS)-based non-targeted metabolomic fingerprinting approach using state-of-the-art liquid-chromatography (LC)-MS technology. This technology, however, allows monitoring of only a minor part of the whole metabolome due to its inherent methodological limitations. Thus, metabolites being potentially crucial for the elucidation of the Lr34 mediated resistance mechanism might evade identification and characterization. To obtain a more comprehensive picture of the complex interplay of the metabolites involved in the Lr34 mediated resistance mechanism, it is therefore necessary to acquire additional data that is complementary to the LC-MS data obtained with our workflow. Within this Doc.Mobility project, I plan to apply the latest and most advanced gas chromatography (GC)-MS technologies and bioinformatic tools to unravel the Lr34-mediated resistance mechanism. The presently most advanced respective workflow including infrastructure, bioinformatics tools and expertise is hosted at the Max Plank Institute of Plant Physiology (MPIMP) in Potsdam, where I intend to spend a 6 month research period in the department of Prof. Dr. Lothar Willmitzer, in the group „Systems Metabolomics“ headed by Dr. Dirk Steinhauser. Prof. Dr. Lothar Willmitzer is a worldwide recognized leading expert and pioneer in plant metabolomics, and he is the founding director of the MPIMP.GC-MS offers the main advantage of an easier and more comprehensive metabolite identification due to the extensive, highly reproducible fragmentation patterns caused by the electron impact ionization method. Aided by sophisticated software tools, such spectra can be identified by comparison with large GC-MS databases, and therefore facilitate to draw conclusions towards their biological functionality. The expertise of MPIMP will support the comparison of metabolite networks of different cereal species (barley, rice, wheat) and thus pave the way to identify the substrate(s) of Lr34.
-