Back to overview

Earth Abundant Semiconductors for next generation Energy Harvesting, EASEH

English title Earth Abundant Semiconductors for next generation Energy Harvesting, EASEH
Applicant Fontcuberta i Morral Anna
Number 157705
Funding scheme SNSF Consolidator Grants
Research institution
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.02.2016 - 31.01.2023
Approved amount 2'357'036.00
Show all

All Disciplines (2)

Material Sciences
Condensed Matter Physics

Keywords (5)

semiconductors; growth; sustainability; molecular beam epitaxy; earth abundant elements

Lay Summary (French)

Ce projet porte sur la recherche sur des semiconducteurs faits à base d'éléments abondants sur la coute terrestre pour des applications en energies renouvelables.
Lay summary

La génération d’électricité à partir des sources renouvelables est un sujet qui a gagné et gagnera beaucoup d’importance dans les décennies à venir. Ce genre de technologie sera seulement soutenable pourvu que les matériaux employés sont composés d’éléments abondants et faciles d’extraire de la croute terrestre.

Nous proposons d’explorer des matériaux semiconducteurs basés sur le phosphur de zinc dans ses deux stoichiometries : le Zn3P2 et le ZnP2. Le phosphor et le zinc sont des éléments abondants et de facile extraction. Les Zn3P2 et le ZnP2 ont des seuils d’absorption respectivement à 1.5 et 1.9eV, ce qui les rend idéales pour la fabrication de cellules solaires. Ce projet a pour but de déterminer comment synthétiser ce matériau avec des excellentes propriétés optoélectroniques et comment changer la conductivité afin de pouvoir fabriquer des cellules solaires de haut rendement et très bas cout. 

Direct link to Lay Summary Last update: 17.02.2015

Responsible applicant and co-applicants



Group / person Country
Types of collaboration
Jagadish group/Australian National University Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Yoshitaro Nose group/Kyoto University Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
CIME day 2018 Poster Growth and characterization of Zinc Phosphide: A novel material for solar energy harvesting 26.02.2018 Lausanne, Switzerland Zamani Mahdi; Escobar Steinvall Simon Robert; Fontcuberta i Morral Anna;
CIME day 2018 Poster Investigation of Liquid Ga-Solid GaAs Interface by Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscop for Ga and As Polar GaAs Nanowires 26.02.2018 Lausanne, Switzerland Stutz Elias; Zamani Mahdi; Fontcuberta i Morral Anna; Escobar Steinvall Simon Robert;
EUROMAT Talk given at a conference Semiconductor nanowires for next generation photovoltaics 17.09.2017 Thessaloniki, Greece Fontcuberta i Morral Anna; Daniil Andreana;
Nanowire Week Poster Characterisation of earth abundant semiconductor nanostructures based on zinc phosphide and zinc arsenide 29.05.2017 Lund, Sweden Zamani Mahdi; Fontcuberta i Morral Anna; Daniil Andreana; Escobar Steinvall Simon Robert;

Associated projects

Number Title Start Funding scheme
170759 HF Vapor Etcher for Stiction Free Release of Suspended Micro- and Nanostructures 01.12.2016 R'EQUIP
177036 Displacement Talbot Lithography for micro and nanopatterning 01.01.2018 R'EQUIP
170748 Advanced system for wafer-scale deposition of 2D semiconductors 01.01.2017 R'EQUIP
156081 Direct doping of self-catalyzed III-V nanowires 01.01.2015 Project funding
143908 Light trapping enhanced mesoscopic solar cells 01.11.2012 Project funding
144954 Cryogen-free scanning confocal microscopy for direct-correlation between structure and function. 01.05.2013 R'EQUIP
164015 Cryogen-free setup for characterisation of quantum dots based on 2D TMD materials 01.07.2016 R'EQUIP


Semiconductor materials have penetrated progressively into our daily life, rendering it safer, easier and more advanced through the integration of electronic circuits in any imaginable appliances. Semiconductors also provide renewable energy harvesting solutions through the thermoelectric and photovoltaic effect. In order to render a broad deployment of these technologies globally sustainable, the abundance of the materials needs to be taken into consideration. At the same time, nanoscale materials such as nanowires have already proven to provide both extremely efficient means for energy harvesting via e.g. improved light-conversion coefficients in solar-cell prototypes and improved thermoelectric figures of merit.This proposal goes beyond the state-of-the-art semiconductor technology in that semiconducting materials made from earth-abundant elements beyond Si are explored as novel and sustainable alternatives for energy harvesting applications. I focus on the zinc-phosphide compounds Zn3P2 and ZnP2 because of their abundance and promising optical, electronic and thermo-electrical properties. Though being extremely promising for a sustainable semiconductor technology, zinc-phosphide epitaxial thin films and filamentary single crystals (nanowires) have not yet been fully mastered. Sustained by my expertise in the synthesis of ultra-high-purity compound semiconductors and nanostructures, I aim at a similar technique for the synthesis of zinc-phosphide compounds. My team will untangle the synthesis of high quality crystals and related heterostructures at the thin film and nanoscale level, and determine the doping conditions for the tailored modification of the conductivity. In summary, we will tackle the following questions: oWhat are the fundamental aspects towards achieving single-crystals with minimized structural defects, including dislocations and vacancies? oHow is it possible to obtain both defect-free Zn3P2 and ZnP2 by epitaxial growth?oHow can we adapt the growth mechanisms to create Zn3P2 and ZnP2 nanowires in a self-organized manner?oWhat is the minimal concentration of P vacancies in thin films and in nanowires?oWhat are the incorporation mechanisms of donor and acceptor impurities in Zn3P2 and ZnP2 for the modulation of conductivity? What are corresponding carrier-density limits? oAre the doping mechanisms different in thin films and in nanowires? oWhat are the essential steps towards the synthesis of high quality heterostructures based on zinc-phosphide? Is there a difference between heterostructure growth in thin films and on nanowire facets? oWhat are the optical and electrical properties of Zn3P2 and ZnP2 epitaxially grown in an ultra-pure growth chamber either as thin films or nanowires?This project will substantiate a novel materials platform for the following applications: solar cells, photo-electrochemical generation of solar fuels and harvesting of waste heat by the thermoelectric effect. It will open a new path towards solid-state renewable energy harvesting applications made with earth-abundant compounds.