Project

Back to overview

Vibrating Sample Magnetometer for Characterization of Micro- and Nanoagents

English title Vibrating Sample Magnetometer for Characterization of Micro- and Nanoagents
Applicant Pané Vidal Salvador
Number 157686
Funding scheme R'EQUIP
Research institution Institut für Robotik und Intelligente Systeme ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.12.2014 - 30.11.2015
Approved amount 120'000.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Other disciplines of Engineering Sciences

Keywords (5)

Nanotechnology; Microrobotics; Nanorobotics; Magnetic materials; Micro- and Nanofabrication

Lay Summary (German)

Lead
Ein Vibrationsmagnetometer (VSM) ist ein wissenschaftliches Gerät zur Messung magnetischer Eigenschaften von Materialien. Bei einer typischen Messung wird eine Probe in ein einheitliches Magnetfeld gelegt und so magnetisiert. Diese Probe wird dann sinusförmigen Vibrationen ausgesetzt. Die daraus entstehenden induzierten Spannungen werden mit Hilfe von Aufnahmespulen ermittelt, und geben Aufschluss über das magnetische Moment einer Probe.
Lay summary

Ein Vibrationsmagnetometer (VSM) ist ein wissenschaftliches Gerät zur Messung magnetischer Eigenschaften von Materialien. Bei einer typischen Messung wird eine Probe in ein einheitliches Magnetfeld gelegt und so magnetisiert. Diese Probe wird dann sinusförmigen Vibrationen ausgesetzt. Die daraus entstehenden induzierten Spannungen werden mit Hilfe von Aufnahmespulen ermittelt, und geben Aufschluss über das magnetische Moment einer Probe.

Verschieden starke einheitliche Magnetfelder werden während dieses Vorgangs angelegt, und somit die magnetische Hysteresekurve eines bestimmten Materials ermittelt. Magnetische Eigenschaften, wie zum Beispiel Sättigungsmagnetisierung, Koerzitivfeldstärke, Durchlässigkeit und Remanenzmagnetisierung können mit dieser Methode bestimmt werden. VSM erlaubt es uns, die magnetischen Eigenschaften unterschiedlichster Werkstoffe, inklusive ferromagnetischer, superparamagnetischer, antiferromagnetischer, paramagnetischer und diamagnetischer Materialien zu bestimmen. Diese Charakterisierung von Werkstoffen die in der Robotik, MEMS, Lab-on-a-Chip, Mikroelektronik und anderen verfahrenstechnischen Anwendungsgebieten eingesetzt werden, ist entscheidend für die Modellierung und Optimierung bestehender und neuartiger Systeme.

Direct link to Lay Summary Last update: 18.11.2014

Responsible applicant and co-applicants

Publications

Publication
An array of 2D Magnetic Micro Force Sensors for Life Science Applications
Praprotnik J, Ergeneman O, Chatzipirpiridis G, Weidlich A, Blaz S, Pan{é} S, Nelson BJ (2015), An array of 2D Magnetic Micro Force Sensors for Life Science Applications, in Procedia Engineering, 120, 220-224.
Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests
Peters Christian, Hoop Marcus, Pan{é} Salvador, Nelson Bradley J, Hierold Christofer (2015), Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests, in Advanced Materials, 0.
Magnetically Driven Silver-Coated Nanocoils for Efficient Bacterial Contact Killing
Hoop Marcus, Shen Yang, Chen Xiang-Zhong, Mushtaq Fajer, Iuliano Loredana M, Sakar Mahmut S, Petruska Andrew, Loessner Martin J, Nelson Bradley J, Pan{é} Salvador (2015), Magnetically Driven Silver-Coated Nanocoils for Efficient Bacterial Contact Killing, in Advanced Functional Materials, 0.
Magnetoelectric micromachines with wirelessly controlled navigation and functionality
Chen X.-Z. Shamsudhin N. Hoop M. Pieters R. Siringil E. Sakar S.M. Nelson B.J. Pané S., Magnetoelectric micromachines with wirelessly controlled navigation and functionality, in Materials Horizons.

Collaboration

Group / person Country
Types of collaboration
Bogazici University Turkey (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
University of Würzburg Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
ETHZ - Micro and Nanosystems Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Laboratory of Food Microbiology Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Autonomous University of Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
ETHZ - Laboratory of Earth and Planetary Magnetism Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events



Self-organised

Title Date Place
Rock and Environmental Magnetism 14.09.2015 ETH Zurich, Switzerland

Associated projects

Number Title Start Funding scheme
147152 Wireless Magnetic Nanoprobes: a Tool for Characterizing and Modeling Cell Biomechanics 01.08.2013 Interdisciplinary projects
143268 Next-generation Autonomous Microrobotic Agents based on Wireless Resonant Magnetic Propulsion Methods 01.10.2012 Project funding
149291 Biocompatible, Low-cost Polymer-based Artificial Bacterial Flagella 01.10.2013 Project funding

Abstract

Magnetic micro- and nanostructures are key building blocks in many micro- and nanodevices. Magnetic actuation has been successfully demonstrated in MEMS, NEMS, microfluidics, and autonomous micro- and nanomachines. Compared to other approaches (e.g., electrostatic, piezoelectric, thermal), magnetic actuation offers several advantages such as high force capacity, large displacements, wireless and bidirectional actuation. Issues related to the miniaturization and integration of magnetic materials have hampered the development of advanced magnetic micro- and nanodevices. Extensive characterization of magnetic materials is crucial for enhancing the capabilities of these devices. While new manufacturing technologies are increasingly enabling the shaping of small bodies in the micro- and nanoscale with a wide chemical nature, some challenges remain related to the way matter grows or is deposited in confined spaces such as pores, templates, or in menisci. For this reason, many engineering groups working on magnetic actuation and control, are incorporating, the development and the characterization of magnetic materials in their research agenda. Within this proposal, we request funds to purchase a Vibrating Sample Magnetometer (VSM), which will enable the measurement and study of the magnetic properties of thin films, micro- and nanostructures, composites, bulk samples, and magnetic fluids. The requested VSM provides high sensitivity with lower than 1 µemu noise level, which enables measurements on micro and nano structures. The coil gap can be adjusted to leave room for custom modifications including temperature control. With a 10 mm pole separation applied magnetic field strength can be 22kOe or higher. The high magnetic field capability is important in order to saturate hard-magnetic materials. The existing VSM system at ETH Zurich can go up to 10 kOe, which is not sufficient for many micro- and nanostructures fabricated in our group. The requested VSM system also provides fast hysteresis measurements, which are very important for material optimization tasks, where hundreds of samples are typically measured in weeks. Dozens of samples can be measured in an hour with the requested VSM including their mounting time and machine startup time. Other magnetometers such as SQUID can provide higher sensitivity measurements. However, only one or two samples can be measured in an hour. The VSM system provides auto-rotation to characterize the anisotropy of samples in an automated way. The vector coils enable the measurement of the magnetization vector. Knowing the anisotropy and magnetization vector in different applied field configurations is important for the developed micro- and nanostructures as these properties define the overall magnetic system performance. Many projects including ones focused on magnetic systems and ones focused on smart magnetic material development will benefit from the requested VSM system, as it will provide fast characterization of magnetic materials with high resolution in-house.
-