Project

Back to overview

Implantable Autonomous Wireless Bio-Electronics for High-Resolution Monitoring and Detection of Epilepsy in-vivo

English title Implantable Autonomous Wireless Bio-Electronics for High-Resolution Monitoring and Detection of Epilepsy in-vivo
Applicant Schmid Alexandre
Number 157090
Funding scheme Project funding
Research institution Laboratoire de systèmes microélectroniques EPFL - STI - IEL - LSM
Institution of higher education EPF Lausanne - EPFL
Main discipline Microelectronics. Optoelectronics
Start/End 01.03.2015 - 28.02.2018
Approved amount 550'000.00
Show all

All Disciplines (2)

Discipline
Microelectronics. Optoelectronics
Biomedical Engineering

Keywords (3)

Wireless cortical implants; Bio-electronic interfaces; Cortical microelectronic implants

Lay Summary (French)

Lead
Un système portable et autonaume en charge de la détection du focus epileptique et de l'étude de signaux corticaux lors d'un épisode épileptique forme une avancée importante dans la réduction des coûts cliniques dus à l'hospitalisation des patients sur une longue durée, et doit permettre une meilleure compréhension de la maladie.
Lay summary

Les patients présentant une forme d'épilepsie résistante aux traitement médicamenteux peuvent bénéficier d'un traitement chirurgical, par lequel certaines parties epileptogéniques du cervau sont résectées. La détection efficace du focus épileptique demande un monitoring long en milleu clinique, peu confortable et potentiellement dangereux. Des récents travaux montrent un intérêt à étudier les signaux cotricaux émis lors des épisodes épileptiques au moyen d'électrodes grande densité.

Ce projet voit l'étude d'un système implantable, permettant aux patients de quitter l'environnement clinique après implantation corticale des électroces et de l'électronique de détection et de transmission de données. Les signaux corticaux sont détectés par des électrodes conformales qui comprennent un circuit intégré d'amplification de signal et de détection de compression de données par la technique de détection comprimée, et de détection des caractéristiques du signal marquant le début d'un épisode épileptique. Plusieurs de ces systèmes son connectés par fil sur une untié centrale qui stocke et contrôle la transmission des données vers une unité externe au crane. Le systeme implanté comprend un accumulateur qui est rechargé sporadiquement par le patient, ce qui lui donne un niveau d'autonomie acceptable.

Le project voit l'étude et la réalisation de modules et algorithmes participants au système complet décrit plus haut, et spécifiquement comprend une étude et modélisation au niveau système, l'étude et l'implémentation dans les circuits d'amplification d'algorithmes de détection d'épilepsie et de compression de données, le contrôle de la puissance interne, le contôle de puissance et de l'accumulation de puissance en interne, la transmission bidirectionnelle de données et la transmission de puissance par lien radio. Le sytème complet est sujet à experimentation.

 

Direct link to Lay Summary Last update: 02.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
A Compact Size Charge-Mode Stimulator Using a Low-Power Active Charge Balancing Method for Deep Brain Stimulation
Ranjandish Reza, Schmid Alexandre (2017), A Compact Size Charge-Mode Stimulator Using a Low-Power Active Charge Balancing Method for Deep Brain Stimulation, in Proc. IEEE 2017 Biomedical Circuits & Systems Conference, Torino, ITIEEE, Torino, IT.
An Active Charge Balancing Method Based on Anodic Current Variation Monitoring
Ranjandish Reza, Schmid Alexandre (2017), An Active Charge Balancing Method Based on Anodic Current Variation Monitoring, in Proc. IEEE 2016 Biomedical Circuits & Systems Conference, Torino, ITIEEE, Torino, IT.
Power/data platform for high data rate in implanted neural monitoring system
Ture Kerim, Ranjandish Reza, Yilmaz Gurkan, Seiler Stefanie, Widmer Hans Rudolf, Schmid Alexandre, Maloberti Franco, Dehollain Catherine (2017), Power/data platform for high data rate in implanted neural monitoring system, in Proc. IEEE 2017 Biomedical Circuits & Systems Conference, Torino, ITIEEE, Torino, IT.
An Active Charge Balancing Method Based on Self-Oscillation of the Anodic Current
Ranjandish Reza, Schmid Alexandre (2016), An Active Charge Balancing Method Based on Self-Oscillation of the Anodic Current, in Proc. IEEE 2016 Biomedical Circuits & Systems Conference, Shangai, ChinaIEEE, Shangai, China.
High Frequency Self-oscillating Current Switching for a Fully Integrated Fail-safe Stimulator Output Stage
Ranjandish Reza, Schmid Alexandre (2016), High Frequency Self-oscillating Current Switching for a Fully Integrated Fail-safe Stimulator Output Stage, in Proc. 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, PortugalIEEE, Lisbon, Portugal.
Optimization of the data rate of an OOK CMOS medical transmitter based on LC oscillators
Ture Kerim, Yilmaz Gurkan, Maloberti Franco, Dehollain Catherine (2016), Optimization of the data rate of an OOK CMOS medical transmitter based on LC oscillators, in Proc. 2016 IEEE International Symposium on Circuits & Systems, Montreal, CAIEEE, Montreal, CA.
Remotely powered PPM demodulator by inductive coupling for rodent applications
Ture Kerim, Kilinc E. G., Maloberti Franco, Dehollain Catherine (2016), Remotely powered PPM demodulator by inductive coupling for rodent applications, in Analog Integrated Circuits and Signal Processing, 88(2), 359-368.
Current Overshoots and Undershoots in Electrical Stimulation: a Circuit-Level Perspective of the Origin and Solutions
Ranjandish Reza, Schmid Alexandre, Current Overshoots and Undershoots in Electrical Stimulation: a Circuit-Level Perspective of the Origin and Solutions, in Proc. 2018 IEEE International Symposium on Circuits & Systems, Florence, ITIEEE, Florence, IT.

Collaboration

Group / person Country
Types of collaboration
Bio-Electronics section at Delft University of Technology Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Franco Maloberti, Pavia, Italy Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Laboratory of Microsystems LMIS2 Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Neurosurgery department, Inselspital Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Michael Green, Irvine University, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
Neurology department, Inselspital Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
The 5th International Symposium on Brainware LSI Talk given at a conference 2. Low-Power Microelectronic Methods for Multichannel Cortical Implantable Systems 23.02.2018 Tohoku University, Sendai, Japan Schmid Alexandre;
Journée thématique GDR SoC2, “Electrophysiologie : des électrodes aux systèmes embarqués pour la santé, quels défis ?” Talk given at a conference Low-Power Microelectronics for Multichannel Cortical Implantable Systems 12.09.2017 Paris VI Jussieu campus, Paris, France, France Schmid Alexandre;
2015 International Workshop on Biomedical Devices and Clinical Applications Talk given at a conference Low-Power Microelectronics for Multichannel Cortical Implantable Systems 15.06.2015 National Chiao Tung University, Hsinchu City, Taiwan, Taiwan Schmid Alexandre;


Awards

Title Year
The following conference paper has been recognized with the 2016 PRIME Silver Leaf Award. Reza Ranjandish, Alexandre Schmid, High Frequency Self-oscillating Current Switching for a Fully Integrated Fail-safe Stimulator Output Stage, IEEE PRIME 2016, Lisbon, Portugal, June 2016 2016

Associated projects

Number Title Start Funding scheme
175790 Implantable Autonomous Wireless Bio-Electronics for High-Resolution Monitoring and Detection of Epilepsy in-vivo, Part-II 01.03.2018 Project funding

Abstract

Monitoring epileptogenic cortical areas in-vivo has been carried out in clinical environment within the context of epilepsy treatment consisting in detecting and subsequently resecting incriminated areas. The determination of the epileptogenic areas as well as the development of future implantable systems aiming at early detection or prediction of the seizure both are in need of autonomous implantable recording systems that enable patients to be monitored in their home environment. To this extent, portable and autonomous solutions to cortical implantable recording systems must be provided. No such full system exists to date, though several research groups have proposed block-level solutions, efficiently implementing some parts of the system. To date, the efficient operation and implementation of several blocks pertaining to cortical implants have been achieved resulting in a fair understanding of block-level engineering issues and their potential solution. A true system-level approach is needed to enable the systematic study and further development of cortical implants. This project is proposed as a continuation of the SNSF-funded projects No. 130166 and 14972 “Implantable Bio-Electronics for Wireless and High-Resolution Monitoring of Epilepsy in-vivo,” formally extending over the period of December 2010 through November 2014, and intends to exploit the achieved knowledge and scientific results to extend the research towards system-level issues, their modeling and the optimization of the developed system, considering a special emphasis to power management. The founding hypothesis of the proposed research consists of the necessity to provide the implant time-based partial autonomy with respect to its external base station. For example, the patients must be allowed to disconnect themselves from the external base station for several hours while trusting the implant to continue operation in automatically adapted state. This fundamental constraint on the operation of the dual consisting of the external base station and the implanted system has tremendous impact on the way the system must be conceived and controlled. The research proposes to tackle the involved issues into the development of a systematic approach to the conception and control of semi-autonomous cortical implants, and proposes to achieve the following scientific goals:•study of a system level (top-down) development methodology based on a rigorous modeling at high and middle levels of abstraction and an optimization procedure with specific emphasize on power dissipation; the system is assumed powered by an external base station mounted on a lightweight helmet; the external base station can be disconnected from the implant which is semi-autonomous;•method for partitioning the algorithms derived in the methodology into external, implanted hardware and software; development of an external and implanted processor supporting the control and dynamic power optimization of the implant; development of power management circuits;•development of cortical recording patches based on a 64-channel integrated circuit embedded into a patch supporting a dense arrangement of microelectrodes; study of flexible patch technology based on wire-bonding technique extensions;•study and development of a wireless power and data transmission system, and an implantable battery management system that fully supports the power management methodology and hardware;•study of seizure detection and prediction algorithms, and partitioning methodology into the analog front-end sensor, and the implanted and external digital hardware based feature extraction; development of the internal memory supporting data storage in autonomous mode, and that supports the power management methodology;•animal experiments studying the effectiveness of high-density readout electrodes, the developed patches, and study of epileptogenic signal capture and seizure detection using the proposed system.The project aims at gathering the theoretical and development parts into one comprehensive system and methodology, that is applied to epilepsy study in-vivo and that will conduct to implantable system with the capacity of modulating or suppressing seizures. This research project is presented as part of long-term goals of the research groups, which have been active and have collaborated in the domain for several years.
-