Project

Back to overview

BRINGING MULTICOMPONENT SEISMICS TO THE NEXT LEVEL: SEISMIC WAVEFIELD GRADIENT EXPLORATION

English title BRINGING MULTICOMPONENT SEISMICS TO THE NEXT LEVEL: SEISMIC WAVEFIELD GRADIENT EXPLORATION
Applicant Schmelzbach Cédric
Number 156996
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.11.2014 - 31.10.2018
Approved amount 239'550.00
Show all

Keywords (8)

Near-surface zone; Anisotropy; S-wave; S-wave splitting; Multicomponent seismic data; Wavefield separation; Seismic wavefield gradient; Noise filtering

Lay Summary (German)

Lead
Seismische Erkundungstechniken zur Untersuchung des Untergrunds gehören zu den wichtigsten geophysikalischen Methoden mit Anwendungen in der Öl- und Gasexploration, der Erkundung geothermaler Lagerstätten, aber auch der Erforschung von Grundwasserleitern und vielen weiteren Anwendungen. Weit verbreitet ist dabei die Aufzeichnung der seismischen Wellen mit Empfängern (Geophonen), welche nur die vertikale Bodenbewegung erfassen. Im Gegensatz dazu erlaubt die Aufzeichnungen der Bodenbewegung in drei Raumrichtungen mit Dreikomponenten-Geophonen eine viel umfassendere Charakterisierung des Untergrunds. Wird zusätzlich auch noch die räumliche Änderung der verschiedenen Komponenten bestimmt (Gradienten der Komponenten; Wellenfeldgradienten), so eröffnen sich fundamental neue Wege der Datenverarbeitung. Während die Messung von Wellenfeldgradienten im Moment die marine Seismik revolutioniert, ist ein vergleichbarer Durchbruch bisher in der Landseismik noch nicht gelungen.
Lay summary

Das grundlegende Ziel dieses Projektes ist es, die praktische Messung seismischer Wellenfeldgradienten und die Nutzung solcher Daten soweit voranzutreiben, dass eine Nutzung von Wellenfeldgradienten-Daten in der Landseismik möglich wird. Eines der fundamentalen Probleme, welches es dabei zu lösen gilt, sind Geophon-Ankopplungsvariationen. Ohne entsprechende Korrektur für Ankopplungsvariationen ist die Berechnung des Wellenfeldgradienten mit grossen Fehlern behaftet oder unmöglich. Ein weiter Forschungsschwerpunkt dieses Projekts wird die Entwicklung von neuen Techniken zur Unterdrückung von kohärenten Störsignalen mit Hilfe von Wellenfeldgradienten-Daten sein. Die Zerlegung des an der freien Oberfläche gemessenen seismischen Wellenfelds in Druck- und Scherwellen ist insbesondere für die Untersuchung des Untergrunds mit konvertierten Wellen und Scherwellen eine wichtige Voraussetzung. Wellenfeldgradienten-Daten werden es ermöglichen, neue Techniken zur Wellenfeldzerlegung zu entwickeln, die eine sehr viel effektivere Wellenfeldtrennung als bisherige Methoden erlauben.

 

Die neu entwickelten Datenverarbeitungstechniken sollen dann im Rahmen dieses Projekts unter anderem zur Untersuchung der Anisotropie des untiefen Untergrunds mit Hilfe von konvertierten und Scherwellen eingesetzt werden. Es kann erwartet werden, dass die Erkenntnisse und Resultate dieses Projekts einen fundamentalen Einfluss auf die zukünftige Art der Akquisition und Verarbeitung von Landseismik-Daten haben werden.
Direct link to Lay Summary Last update: 14.12.2014

Responsible applicant and co-applicants

Employees

Publications

Collaboration

Group / person Country
Types of collaboration
Stewart Greenhalgh (ETH Zurich) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Hansruedi Maurer (ETH Zurich) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Andreas Fichtner (ETH) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Everhard Muyzert (Schlumberger Gould Research) Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
SEISMIX 2018 Talk given at a conference Field comparison of direct and array-derived rotation measurements 17.06.2018 Cracow, Poland Schmelzbach Cédric; van Renterghem Cédéric; Robertsson Johan O. A.;
EGU 2018 Talk given at a conference Comparison of direct rotational-motion measurements and array-derived rotations during a 3D seismic-exploration campaign – the Rot3D experiment 08.04.2018 Vienna, Austria Robertsson Johan O. A.; van Renterghem Cédéric; Schmelzbach Cédric;
AGU 2017 Talk given at a conference 6C polarization analysis seismic direction finding in coherent noise, automated event identification, and wavefield separation 11.12.2017 New Orleans, United States of America Robertsson Johan O. A.; van Renterghem Cédéric; Schmelzbach Cédric;
AGU 2018 Poster Ap- plications of seismic spatial wavefield gradient and rotation data in exploration seismology 11.12.2017 New Orleans, United States of America Schmelzbach Cédric; Robertsson Johan O. A.; van Renterghem Cédéric;
AGU 2017 Poster Benefits of rotational ground motions for planetary seismology 11.12.2017 New Orleans, United States of America Schmelzbach Cédric;
SEG Annual Meeting 2017 Talk given at a conference Land and ocean bottom spatial gradient-based seismic wavefield separation 24.09.2017 Houston, United States of America Robertsson Johan O. A.; Schmelzbach Cédric; van Renterghem Cédéric;
SEG Annual Meeting 2017 Talk given at a conference Automated, six-component, single-station ground-roll identification and suppression by combined processing of translational and rotational ground-motion 24.09.2017 Houston, United States of America van Renterghem Cédéric; Robertsson Johan O. A.; Schmelzbach Cédric;
EGU 2017 Poster On the potential of seismic rotational motion measurements for extraterrestrial seismology 23.04.2017 Vienna, Austria Robertsson Johan O. A.; Schmelzbach Cédric; van Renterghem Cédéric;
EGU 2017 Talk given at a conference Wave mode isolation using spatial wavefield gradients 23.04.2017 Vienna, Austria van Renterghem Cédéric; Schmelzbach Cédric; Robertsson Johan O. A.;
EAGE/DGG Workshop on Fibre Optics Technology in Geophysics Talk given at a conference Spatial wavefield gradient data in seismic exploration 31.03.2017 Potsdam, Germany Robertsson Johan O. A.; van Renterghem Cédéric; Schmelzbach Cédric;
AGU 2016 Talk given at a conference Seismic translational plus rotational sources and receivers from multicomponent arrays and wavefield gradients 12.12.2016 San Francisco, United States of America Robertsson Johan O. A.; Schmelzbach Cédric; van Renterghem Cédéric;
Swiss Geoscience Meeting 2016 Talk given at a conference A new seismic vector source: the Galperin source 19.11.2016 Geneva, Switzerland Schmelzbach Cédric;
SEG Annual Meeting Talk given at a conference Single-component elastic wavefield separation at the free surface using source- and receiver-side gradients 16.10.2016 Dallas, United States of America Robertsson Johan O. A.; van Renterghem Cédéric; Schmelzbach Cédric;
Workshop on seismics within IMAGE Talk given at a conference Seismic spatial wavefield gradient and rotation measurements as new observables in seismic exploration, 12.10.2016 Oslo, Norway Robertsson Johan O. A.; Schmelzbach Cédric;
4th IWGoRS meeting 2016 Talk given at a conference Wavefield separation using spatial wavefield gradient estimates 20.06.2016 Tutzing, Germany Robertsson Johan O. A.; van Renterghem Cédéric; Schmelzbach Cédric;
4th IWGoRS meeting 2016 Talk given at a conference Seismic-wavefield gradient and rotational-rate measurements as new observables in seismic exploration 20.06.2016 Tutzing, Germany Schmelzbach Cédric; Robertsson Johan O. A.;
4th IWGoRS meeting 2016 Talk given at a conference Rotational seismograms on the Moon 20.06.2016 Tutzing, Germany Robertsson Johan O. A.; Schmelzbach Cédric;
EAGE Conference & Exhibition Talk given at a conference Finite-difference modelling of wavefield constituents 30.05.2016 Vienna, Austria Schmelzbach Cédric; Robertsson Johan O. A.; van Renterghem Cédéric;
EAGE Conference & Exhibition Talk given at a conference Wavefield separation of multi- component land seismic data using spatial wavefield gradients 30.05.2016 Vienna, Austria van Renterghem Cédéric; Robertsson Johan O. A.; Schmelzbach Cédric;
Seismix 2016 Talk given at a conference Spatial gradient- based wavefield separation of multicomponent land seismic data 15.05.2016 Aviemore, Great Britain and Northern Ireland van Renterghem Cédéric; Robertsson Johan O. A.; Schmelzbach Cédric;
Seismix 2016 Talk given at a conference Shearwaveidentifi- cation on vertical component seismic data by wavefield gradient analysis 15.05.2016 Aviemore, Great Britain and Northern Ireland van Renterghem Cédéric; Robertsson Johan O. A.; Schmelzbach Cédric;
Seismix 2016 Poster Seismic spatial wavefield gradient and rotation measurements in land-seismic exploration 15.05.2016 Aviemore, Great Britain and Northern Ireland Schmelzbach Cédric; van Renterghem Cédéric; Robertsson Johan O. A.;
EGU 2016 Poster Seismic spatial gradient and rotation measurements as new observables in land seismic exploration 17.04.2016 Vienna, Great Britain and Northern Ireland van Renterghem Cédéric; Schmelzbach Cédric; Robertsson Johan O. A.;
EGU 2016 Talk given at a conference First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis 17.04.2016 Vienna, Austria Robertsson Johan O. A.; Schmelzbach Cédric;


Abstract

Multicomponent seismic array data provide not only recordings of the 3D particle motion and direction of arrival but also vitally important information on the spatial gradients of the seismic wavefield. Such gradient data enable more enhanced wavefield separation (upgoing/downgoing, P/S) and subsurface imaging compared to standard scalar seismic data analysis, which becomes acute for “true” amplitude P- or S-wave processing. Wavefield gradient data acquisition and processing have revolutionized marine-seismic exploration. Comparable developments have occurred in earthquake seismology through ring laser measurements of rotational motion (linked to spatial gradients of the translational motion), but the application of seismic gradient measurements to land exploration has until now only met with limited success. The main problem is receiver-coupling variations which if overcome could facilitate through gradient measurements effective wavefield separation and suppression of cross-line scattered noise contamination of the data.The fundamental goal of this project is to develop novel land-seismic wavefield gradient analysis techniques. We propose to devise novel receiver corrections schemes based on a technique recently developed in the applicants’ research group, as one of the key steps for enabling land-seismic gradient analysis. This will be followed by further developments in noise cancellation and wavefield-separation schemes for land-seismic exploration. These technique developments will then be applied to newly acquired tensor seismic field data. Specifically, we propose a unique volumetric-gradient recording experiment that will allow a systematic investigation of a series of gradient-data applications to field data.We expect that the gradient-based seismic processing will be of particular value to S-wave and converted-wave (P-to-S conversion) exploration as well as to S-wave splitting studies, which are key for anisotropy characterization. In contrast to its widespread application to the study of fractured reservoirs in hydrocarbon exploration, seismic anisotropy has been largely overlooked in near-surface investigations. We will demonstrate the value of the novel gradient-analysis developments for the case of imaging near-surface anisotropy, which will provide new insights into both the physics and constitution of the shallowest subsurface.Land wavefield gradient-based acquisition and analysis schemes can be expected to have a similar fundamental impact on seismic exploration as in the marine case. It is likely that the successful completion of the project proposed here will stimulate further research, eventually leading to new ways of acquiring and processing land seismic data. While there exists a wide range of potential gradient-data applications, converted-wave exploration of fractured shale gas and geothermal reservoirs, for example, could be significantly enhanced, resulting in more efficient and environmentally friendly use of these resources.
-