Project

Back to overview

Standard Model and Higgs Physics at the LHC

Applicant Grazzini Massimiliano
Number 156585
Funding scheme Project funding
Research institution Institut für Theoretische Physik Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Particle Physics
Start/End 01.10.2014 - 30.09.2016
Approved amount 237'770.00
Show all

Keywords (3)

Perturbative computations; Standard Model; Higgs physics

Lay Summary (Italian)

Lead
Lo scopo di questo progetto e' ottenere predizioni teoriche accurate peri processi di produzione di coppie di bosoni vettori, quark pesanti e per la produzione del bosone di Higgs in collisioni adroniche. Nel caso della produzione di bosoni vettori e quark pesanti, abbiamo in programma di estendere l'accuratezza dei calcoli attuali al secondo ordine nella teoria perturbativa delle interazioni forti. Nel caso del bosone di Higgsvogliamo includere nei calcoli gia' esistenti l'effetto di piccole deviazioni dal Modello Standard, per permettere uno studio sistematico di possibili effetti di nuova fisica.
Lay summary

In questo progetto si considerano importanti processi di scattering in collisioni adroniche: produzione di coppie di bosoni vettori, di quark pesanti e del bosone di Higgs.
Lo scopo del progetto e' duplice. Nel caso della produzione di coppie di bosoni vettori e di quark pesanti,
vogliamo estendere l'accuratezza delle predizioni teoriche in Cromodinamica Quantistica (QCD)
al secondo ordine nella teoria delle perturbazioni, e includere i contributi dominanti a piccoli momenti
trasversi a tutti gli ordini. Nel caso della produzione di bosoni vettori, questo risultato puo' essere
ottenuto usando tecniche che sono essenzialmente gia' disponibili. Il risultato finale sara' un codice flessibile che permetta all'utente di studiare la cinematica completa del processo e che possa essere usato dalle collaborazioni sperimentali.
Nel caso della produzione di quark pesanti, che coinvolge particelle colorate nello stato finale,
le tecniche usate per produzione di bosoni vettori o di Higgs non possono esser applicate in modo elementare. In questo caso vogliamo estendere il nostro approccio per tenere conto della radiazione di QCD dai quark pesanti.
Nel caso della produzione del bosone di Higgs calcoli al secondo ordine della teoria delle perturbazioni esistono gia'. Vogliamo estendere questi risultati includendo l'effetto di piccole deviazioni dal modello Standard nello studio delle distribuzioni differenziali, usando un approccio di lagrangiana effettiva. Questo permetterà' studi sistematici di possibili effetti di nuova fisica.

 

Direct link to Lay Summary Last update: 14.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
$W^{\pm}Z$ production at hadron colliders in NNLO QCD
Grazzini Massimiliano, Kallweit Stefan, Rathlev Dirk, Wiesemann Marius (2016), $W^{\pm}Z$ production at hadron colliders in NNLO QCD, in Phys. Lett., B761, 179-183.
$W^{+}W^{−}$ production at the LHC: fiducial cross sections and distributions in NNLO QCD
Grazzini Massimiliano, Kallweit Stefan, Pozzorini Stefano, Rathlev Dirk, Wiesemann Marius (2016), $W^{+}W^{−}$ production at the LHC: fiducial cross sections and distributions in NNLO QCD, in JHEP, 08, 140-140.
Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD
de Florian Daniel, Grazzini Massimiliano, Hanga Catalin, Kallweit Stefan, Lindert Jonas M., Maierhöfer Philipp, Mazzitelli Javier, Rathlev Dirk (2016), Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, in JHEP, 09, 151-151.
$Wγ$ and $Zγ$ production at the LHC in NNLO QCD
Grazzini Massimiliano, Kallweit Stefan, Rathlev Dirk (2015), $Wγ$ and $Zγ$ production at the LHC in NNLO QCD, in JHEP, 07, 085-085.
The $q_T$ subtraction method for top quark production at hadron colliders
Bonciani Roberto, Catani Stefano, Grazzini Massimiliano, Sargsyan Hayk, Torre Alessandro (2015), The $q_T$ subtraction method for top quark production at hadron colliders, in Eur. Phys. J., C75(12), 581-581.
Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay
Catani Stefano, de Florian Daniel, Ferrera Giancarlo, Grazzini Massimiliano (2015), Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, in JHEP, 12, 047-047.
ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD
Grazzini Massimiliano, Kallweit Stefan, Rathlev Dirk (2015), ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, in Phys. Lett., B750, 407-410.

Collaboration

Group / person Country
Types of collaboration
Stefan Kallweit, University of Mainz Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Roberto Bonciani, University of Roma Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Daniel de Florian Argentina (South America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Stefano Catani, INFN Firenze Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Associated projects

Number Title Start Funding scheme
141847 Particle Physics with high-quality data from the CERN LHC 01.10.2012 Sinergia
160814 Particle Physics with high-quality data from the CERN LHC 01.10.2015 Sinergia
169041 Standard Model and Higgs Physics at the LHC 01.10.2016 Project funding

Abstract

The CERN Large Hadron Collider (LHC) has closed its 2011-2012 run at 7 and 8 TeV with the discovery of a scalar particle consistent with the long sought Higgs boson. Such important discovery has not been followed by any evidence for new physics beyond the Standard Model (SM). In a year from now the LHC will start to collect data after the long shutdown. Such run at an increased centre-of-mass energy of 13 (14) TeV will allow the ATLAS and CMS experiments to resume the search for new physics signals and to better study the properties of the new resonance. This project is focused on selected physics processes that are particularly relevant at the LHC: vector boson pair production, Higgs and top-quark production. The production of vector boson pairs is of central importance for LHC physics. Besides being a background for Higgs and SUSY searches, it can be used to measure the vector boson trilinear couplings. The production of Higgs bosons is of course crucial, especially after the discovery of the new scalar resonance in july 2012. The production of heavy quarks is also key process at hadron colliders and it has received a great attention in the last few years. The aim of this research project is twofold:1) In the case of vector boson pair production and heavy quark production, we plan to extend the accuracy of the theoretical predictions to next-to-next-to-leading order (NNLO), and to include the dominant logarithmically enhanced contributions at small transverse momenta to all perturbative orders. As for vector boson pair production this goal can be achieved essentially by using techniques that are currently available, and have been devised and successfully exploited by the applicant and his collaborators to Higgs and single vector boson production and other key processes. As for heavy-quark production, which involves colored particles in the final state, the techniques that have been used are being extended, and the project aims at adapting the available numerical programs to perform fixed order and resummed calculations to treat the additional soft radiation from the top-quark pair. The results we envisage will have an important role on current collider phenomenology, and, at the same time, offer a not trivial playground to sharpen our theoretical tools.2) In the case of Higgs boson production, the applicant and his collaborators have developed numerical tools to provide accurate theoretical predictions within the SM. With the start of the LHC Run II it will be crucial to assess possible deviations in the Higgs properties from the SM picture. Such deviations can be more visible in certain kinematical distributions of the Higgs boson. We plan to incorporate new physics effects in the available calculations by treating them as small effects on top of the available SM predictions.
-