Project

Back to overview

Idiosyncratic drug-induced liver injury: hepatotoxicity of tyrosine kinase inhibitors and impairment of mitochondrial fatty acid metabolism

English title Idiosyncratic drug-induced liver injury: hepatotoxicity of tyrosine kinase inhibitors and impairment of mitochondrial fatty acid metabolism
Applicant Krähenbühl Stephan
Number 156270
Funding scheme Project funding
Research institution Klinische Pharmakologie und Toxikologie Universitätsspital Basel
Institution of higher education University of Basel - BS
Main discipline Pharmacology, Pharmacy
Start/End 01.01.2015 - 31.12.2018
Approved amount 401'436.00
Show all

Keywords (5)

hepatic fatty acid metabolism; metabolomics; tyrosine kinase inhibitors; drug-induced liver injury; mitochondrial function

Lay Summary (German)

Lead
Tyrosinkinasehemmer (TKI) sind Arzneistoffe, welche bei Krebserkrankungen eingesetzt werden. Selten können sie Schäden am Herzen verursachen, vorwiegend durch Schädigung der Mitochondrien. Leberschäden gehören auch zu den unerwünschten Wirkungen von TKI, mit bis jetzt unbekanntem Mechanismus. Fettsäuren sind wichtige, mitochondriale Energieträger. Störungen des Fettsäuremetabolismus können via Energiemangel oder Ablagerung toxischer Stoffe zu Leberschäden führen. In den vorgeschlagenen Studien werden Mechanismen für Leberschäden unter TKI und neuartige Methoden zur Erfassung von Störungen des Fettsäuremetabolismus erforscht.
Lay summary
??

Idiosynkratische Arzneistoff-bedingte Leberschäden: Hepatotoxizität von Tyrosinkinasehemmern und Bedeutung der Hemmung des mitochondrialen Fettsäuremetabolismus

Im  ersten Projekt wird zuerst die Toxizität verschiedener TKI auf kultivierte Zellen geprüft; gleichzeitig werden auch Rückschlüsse auf toxische Mechanismen gezogen. Bei Hinweisen auf mitochondriale Ursachen werden diese mit speziellen Methoden untersucht. Ein wichtiges Ziel dieser Untersuchungen ist es, spezifische Mechanismen für die Toxizität zu finden. Die Kenntnis solcher Mechanismen erlaubt es, Zellen zu produzieren, welche sensitiver auf die entsprechenden Substanzen sind. Falls dies gelingt, werden die Ergebnisse in einem geeigneten Maus-Modell in vivo verifiziert.

Im zweiten Projekt wird die Wirkung von bekannten Hemmstoffen des mitochondrialen Fettsäuremetabolismus in Zellmodellen bezüglich Entstehung von Metaboliten aus Fettsäuren charakterisiert. Die akkumulierten Fettsäuremetaboliten werden mittels spezifischer Methoden umfassend analysiert („metabolomics“). Die in Zellen gewonnenen Daten werden dann im Versuchstier verifiziert.

Die Studien dienen dazu, Mechanismen für hepatische unerwünschte Wirkungen von TKI und anderen Arzneistoffen zu finden und zu verifizieren. Die Kenntnis solcher Mechanismen erlaubt die Identifizierung von Faktoren für erhöhte Empfindlichkeit auf toxische Arzneistoffe wie z.B. TKI. Solche Kenntnisse sind sowohl für betroffene Patienten wie auch für die Entwicklung neuer Arzneistoffe sehr wichtig.

Direct link to Lay Summary Last update: 13.01.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Sunitinib induces hepatocyte mitochondrial damage and apoptosis in mice
Paech Franziska, Abegg Vanessa F., Duthaler Urs, Terracciano Luigi, Bouitbir Jamal, Krähenbühl Stephan (2018), Sunitinib induces hepatocyte mitochondrial damage and apoptosis in mice, in Toxicology, 409, 13-23.
Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells
Grünig David, Felser Andrea, Duthaler Urs, Bouitbir Jamal, Krähenbühl Stephan (2018), Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells, in Toxicological Sciences, 164(2), 477-488.
Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells
Grünig David, Duthaler Urs, Krähenbühl Stephan (2018), Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells, in Frontiers in Pharmacology, 9, 257.
Mechanisms of toxicity associated with six tyrosine kinase inhibitors in human hepatocyte cell lines.
Mingard Cécile, Paech Franziska, Bouitbir Jamal, Krähenbühl Stephan (2018), Mechanisms of toxicity associated with six tyrosine kinase inhibitors in human hepatocyte cell lines., in Journal of applied toxicology : JAT, 38(3), 418-431.
Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells.
Paech Franziska, Mingard Cécile, Grünig David, Abegg Vanessa F, Bouitbir Jamal, Krähenbühl Stephan (2018), Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells., in Toxicology, 395, 34-44.
Hepatocellular Toxicity Associated with Tyrosine Kinase Inhibitors: Mitochondrial Damage and Inhibition of Glycolysis.
Paech Franziska, Bouitbir Jamal, Krähenbühl Stephan (2017), Hepatocellular Toxicity Associated with Tyrosine Kinase Inhibitors: Mitochondrial Damage and Inhibition of Glycolysis., in Frontiers in pharmacology, 8, 367-367.
Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072.
Paech Franziska, Messner Simon, Spickermann Jochen, Wind Mathias, Schmitt-Hoffmann Anne-Hortense, Witschi Anne Therese, Howell Brett A, Church Rachel J, Woodhead Jeff, Engelhardt Marc, Krähenbühl Stephan, Maurer Martina (2017), Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072., in Archives of toxicology, 91(11), 3647-3662.
The catechol-O-methyltransferase inhibitors tolcapone and entacapone uncouple and inhibit the mitochondrial respiratory chain in HepaRG cells.
Grünig David, Felser Andrea, Bouitbir Jamal, Krähenbühl Stephan (2017), The catechol-O-methyltransferase inhibitors tolcapone and entacapone uncouple and inhibit the mitochondrial respiratory chain in HepaRG cells., in Toxicology in vitro : an international journal published in association with BIBRA, 42, 337-347.
Comparison of Liver Cell Models Using the Basel Phenotyping Cocktail
Berger Benjamin, Donzelli Massimiliano, Maseneni Swarna, Boess Franziska, Roth Adrian, Krähenbühl Stephan, Haschke Manuel (2016), Comparison of Liver Cell Models Using the Basel Phenotyping Cocktail, in Frontiers in Pharmacology, 7, 443.

Associated projects

Number Title Start Funding scheme
132992 Molecular mechanisms of mitochondrial toxicity of drugs 01.10.2010 Project funding

Abstract

Drug induced liver injury is a frequent cause of adverse drug reactions and for withdrawal of drugs from the market. It is therefore important to be able to detect the hepatotoxic potential of a new compound already early in drug development and also to identify susceptibility factors which may be associated with the development of liver injury in patients. This is only possible when the mechanisms of adverse drug reactions are known. Acquaintance of the toxicological mechanisms enables us to predict potential susceptibility factors and also biomarkers for drug-associated liver injury. In this grant application, I propose two separate projects in this area. In part A, hepatic toxicity of tyrosine kinase inhibitors (TKI), a drug class which has become very important for cancer treatment, is going to be investigated. So far, liver injury from asymptomatic elevation of transaminases up to liver failure has been described in patients treated with TKIs, but mechanistic studies are rare. I propose to start with a broad approach using established toxicological methods in order not to miss potential mechanisms. Since TKIs have been associated with mitochondrial toxicity in heart and skeletal muscle, a focus on impairment of mitochondrial function will be made after the broad approach. I plan to study first the toxicological effects of different TKIs in established cell models (HepG2 cells, HepaRG cells, primary human hepatocytes) in order to characterize toxicological mechanisms in vitro. After having obtained information about the mechanism, potential susceptibility factors (e.g. impaired mitochondrial function in case of mitochondrial toxicity or enzyme induction in case of toxicity associated with metabolites) can be postulated. Such susceptibility factors can then be tested in a second in vitro step by genetic or pharmacological modification of the cells used to assess the mechanisms of toxicity. In a further step, these factors will also be tested in suitable animal models in vivo. In part B, I propose to focus on inhibition of hepatic mitochondrial fatty acid metabolism, which, according to my experience, is an important toxicological mechanism of many drugs affecting the liver. Mitochondrial fatty acid metabolism is a complex metabolic pathway, starting with the activation of fatty acids and conversion of the acyl-CoA formed to the respective acylcarnitine, which is transported into the mitochondrial matrix, reconverted to the acylcarnitine and finally ß-oxidized to form acetyl-CoA. According to the complexity of this pathway, mitochondrial fatty acid oxidation is susceptible for derangements by chemical compounds such as drugs. We will first study test compounds which are known inhibitors of hepatic fatty acid metabolism in the above mentioned in vitro test systems in order to show that this type of toxicity can be demonstrated in cell cultures in vitro. This will also allow us the screen for biomarkers with a targeted metabolite approach (acylcarnitines) as well as a non-targeted metabolomic approach. We will then test a number of drugs known to be hepatotoxic using our cellular test systems and biomarkers for impaired mitochondrial fatty acid metabolism. In these studies, we also plan to investigate the effects of drugs and/or accumulating fatty acid metabolism intermediates on the expression of key enzymes and on the regulation of mitochondrial fatty acid metabolism. Finally, similar to part A, susceptibility factors can be postulated and tested in genetically or pharmacologically altered cells and in experimental animals. If successful, the proposed studies will not only enlarge our knowledge regarding mechanisms of adverse drug reactions, but also generate new test systems and reveal new biomarkers for hepatotoxic drugs. Furthermore, they challenge the current thinking about drug-associated idiosyncrasy with potentially large consequences for drug development and drug treatment of patients.
-