Project

Back to overview

Direct doping of self-catalyzed III-V nanowires

English title Direct doping of self-catalyzed III-V nanowires
Applicant Fontcuberta i Morral Anna
Number 156081
Funding scheme Project funding
Research institution Laboratoire des matériaux semiconducteurs EPFL - STI - IMX - LMSC
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.01.2015 - 30.04.2017
Approved amount 193'047.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Condensed Matter Physics

Keywords (4)

semiconductor nanowire; doping; one-dimensional structure; nanowire-based heterostructures

Lay Summary (French)

Lead
Fabrication et caractérisation des heterostructures dopées en nanofils de GaAs
Lay summary

Les nanofils semiconducteurs sont des crystaux en forme de fil et un diamètre de quelque dizaines de nanomètres. Grâce à leur morphologie très spéciale, ils offrent des grandes perspectives pour des applications en optoelectronique, photovoltaique et biomedical. Beaucoup de ces applications sont seulement possible si l'on peut introduire des impuretés (dopage) afin de changer les propriétés electriques. Nous avons fait des progrès en ce qui concerne l'introduction de dopants dans les nanofils de GaAs. Nous savons maintenant comment introduire Si, C et Be dans le coeur et la coquille du nanofil et comment obtenir du dopage type n ou p. Ceci nous a permis de fabriquer des cellules solaires à base de nanofils et de montrer leur potentiel pour des nouvelles générations de cellules.

La compréhension de comment s'effectue le dopage nous permet de concevoir des structures plus sophistiquées qui devraient avoir des meilleures propriétés. Par exemple, nous envisageons la fabrication de structures qui donnent lieu à des mobilités electroniques bien plus élevées et qui nous permettent de montrer des phénomènes de conduction à une dimension (grâce à la géometrie des fils). Nous allons étudier ces systèmes par deux méthodes. Nous allons contacter les structures electriquement et étudier le transport électronique. Nous allons aussi les caractériser sans contactes électriques par le biais de l'intéraction des electrons avec la lumière. Ceci nous permet de découpler l'effet des contactes des propriétés intrinsèques des structures. 

 

Direct link to Lay Summary Last update: 29.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Revealing Large-Scale Homogeneity and Trace Impurity Sensitivity of GaAs Nanoscale Membranes
Yang Z., Surrente A., Tutuncuoglu G., Galkowski K., Cazaban-Carrazé M., Amaduzzi F., Leroux P., Maude D. K., Fontcuberta i Morral A., Plochocka P. (2017), Revealing Large-Scale Homogeneity and Trace Impurity Sensitivity of GaAs Nanoscale Membranes, in Nano Letters, 17(5), 2979-2984.
Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping
Boland Jessica L., Casadei Alberto, Tütüncüoglu Gözde, Matteini Federico, Davies Christopher L., Jabeen Fauzia, Joyce Hannah J., Herz Laura M., Fontcuberta i Morral Anna, Johnston Michael B. (2016), Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping, in ACS Nano, 10(4), 4219-4227.
Tuning the response of non-allowed Raman modes in GaAs nanowires
Amaduzzi Francesca, Alarcón-Lladó Esther, Hautmann Hubert, Tanta Rawa, Matteini Federico, Tütüncüoǧlu Gözde, Vosch Tom, Nygård Jesper, Jespersen Thomas, Uccelli Emanuele, Fontcuberta i Morral Anna (2016), Tuning the response of non-allowed Raman modes in GaAs nanowires, in Journal of Physics D: Applied Physics, 49(9), 095103-095103.
From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires
Potts Heidi, Friedl Martin, Amaduzzi Francesca, Tang Kechao, Tuetuencueoglu Goezde, Matteini Federico, Llado Esther Alarcon, McIntyre Paul C., Fontcuberta i Morral Anna (2016), From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires, in NANO LETTERS, 16(1), 637-643.
Hybrid Semiconductor Nanowire–Metallic Yagi-Uda Antennas
Ramezani Mohammad, Casadei Alberto, Grzela Grzegorz, Matteini Federico, Tütüncüoglu Gözde, Rüffer Daniel, Fontcuberta i Morral Anna, Gómez Rivas Jaime (2015), Hybrid Semiconductor Nanowire–Metallic Yagi-Uda Antennas, in Nano Letters, 15(8), 4889-4895.
Modulation Doping of GaAs/AlGaAs Core-Shell Nanowires With Effective Defect Passivation and High Electron Mobility
Boland Jessica L., Conesa-Boj Sonia, Parkinson Patrick, Tuetuencueoglu Goezde, Matteini Federico, Rueffer Daniel, Casadei Alberto, Amaduzzi Francesca, Jabeen Fauzia, Davies Christopher L., Joyce Hannah J., Herz Laura M., Fontcuberta i Morral Anna, Johnston Michael B. (2015), Modulation Doping of GaAs/AlGaAs Core-Shell Nanowires With Effective Defect Passivation and High Electron Mobility, in NANO LETTERS, (2), 1336-1342.

Collaboration

Group / person Country
Types of collaboration
Prof. Dr. D. Grundler/ Technische Universität München Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Dr. M. Johnston Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. B. Deveaud-Pledran/EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. D. Zumbühl Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
UK Semiconductors Talk given at a conference Semiconductor nanowires for applications in photonics and energy harvesting 11.05.2016 Sheffield, Great Britain and Northern Ireland Fontcuberta i Morral Anna;
Nanolight 2016 Talk given at a conference Nanophotonics with semiconductor nanowires 06.03.2016 Benasque, Spain Fontcuberta i Morral Anna;
Nanowires Poster Doping mechanisms in semiconductor nanowires 26.10.2015 Barcelona, Spain Fontcuberta i Morral Anna; Casadei Alberto; Amaduzzi Francesca;
Workshop Frontiers in Nanophotonics Talk given at a conference Photonics with semiconductor nanowires 29.08.2015 Ascona, Switzerland Casadei Alberto; Fontcuberta i Morral Anna;
International School and Conference on the Physics of Semiconductors Talk given at a conference Semiconductor nanowire heterostructures and related applications 12.06.2015 Jaszowiec, Poland Fontcuberta i Morral Anna;
International Conference of Microscopy of Semiconductors Talk given at a conference Semiconductor nanowire heterostructures 29.03.2015 Cambridge, Great Britain and Northern Ireland Fontcuberta i Morral Anna;
Advanced Materials and Nanotechnology (AMN-7), Talk given at a conference Semiconductor nanowires for applications in photonics and energy harvesting 08.02.2015 Nelson, New Zealand Fontcuberta i Morral Anna;


Self-organised

Title Date Place
Fall meeting of the Materials Research Society 29.11.2015 Boston, United States of America
Spring meeting of the Materials Research Society 06.04.2015 San Francisco, United States of America

Awards

Title Year
European Physical Society Emy Noether Distinction 2015

Associated projects

Number Title Start Funding scheme
164015 Cryogen-free setup for characterisation of quantum dots based on 2D TMD materials 01.07.2016 R'EQUIP
137648 Direct doping of self-catalyzed III-V nanowires 01.01.2012 Project funding
157705 Earth Abundant Semiconductors for next generation Energy Harvesting, EASEH 01.02.2016 SNSF Consolidator Grants
163861 Advanced heterostructures based on III-V nanostructures for photonics on silicon 01.02.2016 Russia

Abstract

Semiconductor nanowires are high aspect-ratio filamentary crystals with a tailored diameter in the sub-micron range. Thanks to their special geometry and dimensions, they hold great promise as building blocks for next generations of electronic and optoelectronic devices. Many of these applications have been only possible thanks to the introduction of impurities (doping) for the engineering of the electrical properties. In the last few years we have gained significant understanding on the incorporation of dopants in GaAs semiconductor nanowires. We understand now how Si, C and Be are incorporated in both the nanowire core and shell. We understand how n and p-type conductivity can be achieved, as well as different ranges of dopant concentrations. This understanding has allowed us to fabricate for example high quality pn junctions, which are now considered for next generation solar cells. The detailed understanding of doping in nanowires enables us to move further to the detailed study of more sophisticated structures which should also exhibit highly improved properties. In particular, we plan to reduce the size of the conducting channels and embed them within the nanowire structure. We will separate the nanoscale conducting channels from the surface and the dopants. Thereby we avoid the major sources of carrier scattering in nanowires. With this strategy we expect to increase the overall mobility of carriers in the nanowires. At the same time, thanks to the precise control of the nanowire heterostructures achieved by the use of molecular beam epitaxy (MBE), we expect to be able to tune the density of carriers to a much wider range than in ‘bulk’ doping. For this, it will be very important to understand if the nanowire geometry with its increased surface-to-volume ratio also implies a higher incorporation of unintentional dopants. We want to answer the main following questions:•What is the origin and location of residual doping in III-V nanowires fabricated by MBE? To what extend does residual doping change the functional properties of the heterostructures?•What limits the maximum carrier mobility in nanowires? Does it depend on the geometry or in the nature of surfaces/interfaces? •Does nanowire-based heterostructure design enable a wider range for the dopant concentrations compared to ‘bulk’ values? What is the effect of the distances between the delta-doping layer, the external surface and the conducting channel?The project is organized around the following aspects: the synthesis and the investigation of the electronic transport properties. The electronic transport properties will be investigated by performing magnetotransport experiments on contacted samples. We will also use alternative techniques and avoid electrical contacts that might provoke spurious effects. These techniques are Raman Spectroscopy (resonant and non-resonant), Photoluminescence (with and without the application of a magnetic field), optical-pump THz-probe spectroscopy and cantilever magnetometry at cryogenic temperatures. At the end of this project we hope to provide a fundamental understanding on the possibilities of doped nanowire-based heterostructures and the optimization of the electronic properties. We expect our results will be of general interest for a broad regime of nanowire-based applications and offer new perspectives for research on one-dimensional structures, e.g, quantum transport phenomena.
-